Sv1ca-4.ru

Строй журнал
5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электрическое сопротивление постоянному току жил кабелей при температуре

ЖИЛЫ ТОКОПРОВОДЯЩИЕ ДЛЯ КАБЕЛЕЙ, ПРОВОДОВ И ШНУРОВ

(IEC 60228:2004, Conductors of insulated cables, MOD)

Москва Стандартинформ 2021

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

1 ПОДГОТОВЛЕН Открытым акционерным обществом «Всероссийский научно-исследовательский. проектно-конструкторский и технологический институт кабельной промышленности (ОАО «ВНИИКП») на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 5

2 ВНЕСЕН Межгосударственным техническим комитетом по стандартизации МТК 046 «Кабельные изделия»

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 19 марта 2021 г. No 138-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3164) 004-9?

Код страны по МК IEC. 2004 — Все права сохраняются © Стандартинформ, оформление. 2021

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1 Область применения

2 Термины и определения

4.2 Однопроволочные алюминиевые жилы

4.3 Многопроволочные алюминиевые жилы

5 Однопроволочные и многопроволочные жилы

5.1 Однопроволочные и многопроволочные (для больших сечений) жилы (класс 1)

5.2 Многопроволочные круглые неуплотненные жилы (класс 2)

5.3 Многопроволочные круглые уплотненные жилы и многопроволочные фасонные жилы (класс 2)6

6 Гибкие жилы (классы 3—6)

6.2 Электрическое сопротивление

7 Проверка соответствия требованиям разделов 5 и 6

Приложение А (обязательное) Измерение электрического сопротивления

Приложение В (справочное) Точные формулы для определения поправочных температурных коэффициентов

Приложение С (справочное) Руководство по предельным размерам круглых жил

Введение

IEC 60228:2004 устанавливает требования к номинальному сечению токопроводящих жил элек* трических кабелей, проводов и шнуров широкого диапазона типов, включая требования к числу и диа* метру проволок и значению электрического сопротивления.

IEC 60228:2004 устанавливает требования к конструкции жил только для силовых кабелей и шнуров (см. раздел 1), поэтому содержит только классы жил 1. 2. 5 и 6. В настоящее время в странах СНГ разработано большое количество кабельных изделий с жилами классов 3 и 4. поэтому настоящий стандарт дополнен этими классами и из раздела 1 исключено слово «силовых».

Требования к токопроводящим жилам электрических кабелей, проводов и шнуров в настоящем стандарте полностью соответствуют установленным в IEC 60228:2004. При этом в настоящем стандарте расширены требования IEC 60228:2004 на все группы кабельных изделий, в том числе в части применения токопроводящих жил из алюминиевого сплава для классов 4 и 5, также сохранены диапазоны сечений жил по классам: для класса 1 сохранено изготовление жил из алюминия и возможность изготовления многопроволочных жил наряду с однопроволочными.

Читать еще:  Tp s512 pb83 убавить ток подсветки

Размеры жил. приведенные в настоящем стандарте, установлены в метрической системе. В настоящее время Канада для указания размеров и параметров жил использует американские системы AWG (American Wire Gauge) и kcmtl (kilo circular mils) для больших размеров, как показано ниже. Применение в Канаде этого размерного ряда предписано национальными нормами для электроустановок. В стандартах IEC на кабельные изделия нет кабелей, проводов и шнуров с жилами в системе AWG/kcmil.

Сопротивление кабелей с изоляцией из сшитого полиэтилена на напряжение 6 — 35 кВ

Значения активного и реактивного (индуктивного) сопротивления кабелей с изоляцией из сшитого полиэтилена приводятся в каталогах завода-изготовителя. Для ознакомления приведу лишь некоторых производителей кабельной продукции.

«Электрокабель» Кольчугинский завод» – Каталог кабельной продукции.

В таблице 12 – приводятся значения активного сопротивления кабелей согласно ГОСТ 22483-2012

Компания «Estralin» — Каталог силовые кабели и кабельные системы 6 – 220 кВ.

Компания «Камкабель» — Настольная книга проектировщика. Кабели с изоляцией из сшитого полиэтилена на напряжение 6-35 кВ.

Справочники по проектированию электрических сетей и руководящие указания, которые упомянуты в данной статье, вы сможете найти, скачав архив.

1. Расчет токов короткого замыкания в электросетях 0,4-35 кВ, Голубев М.Л. 1980 г.

Поделиться в социальных сетях

Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding» и «PayPal» .

Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

Основное назначение токоограничивающих реакторов это снижение токов короткого замыкания за.

В данной статье будет рассматриваться выбор кабеля (провода) по нагреву при повторно-кратковременном.

В данном примере нужно определить реактивную мощность, которую генерирует синхронный двигатель серии.

В данном примере требуется выбрать опорные изоляторы для раннее выбранных сборных шин 10 кВ. Исходные.

В данном примере рассматривается расчет проверки шин и изоляторов на электродинамическую стойкость при.

Отправляя сообщение, Вы разрешаете сбор и обработку персональных данных.
Политика конфиденциальности.

Что влияет на сопротивление медного провода

Электрический импеданс медного кабеля зависит от нескольких факторов:

  • Удельного сопротивления;
  • Площади сечения проволоки;
  • Длины провода;
  • Внешней температуры.
Читать еще:  Как подключить телефонную розетку кабелем лапша

Последним пунктом можно пренебречь в условиях бытового использования кабеля. Заметное изменение импеданса происходит при температурах более 100°C.


Зависимость сопротивления

Удельное сопротивление в системе СИ обозначается буквой ρ. Оно определяется, как величина сопротивления проводника, имеющего сечение 1 м2 и длину 1 м, измеряется в Ом ∙ м2. Такая размерность неудобна в электротехнических расчетах, поэтому часто используется единица измерения Ом ∙ мм2.

Вам это будет интересно Определение тока или напряжения в розетке

Важно! Данный параметр является характеристикой вещества — меди. Он не зависит от формы или площади сечения. Чистота меди, наличие примесей, метод изготовления проволоки, температура проводника — факторы, влияющие на удельное сопротивление.

Зависимость параметра от температуры описывается следующей формулой: ρt= ρ20[1+ α(t−20°C)]. Здесь ρ20— удельное сопротивление меди при 20°C, α— эмпирически найденный коэффициент, от 0°Cдо 100°C для меди имеет значение, равное 0,004 °C-1, t — температура проводника.

Ниже приведена таблица значений ρ для разных металлов при температуре 20°C.


Таблица удельного сопротивления

Согласно таблице, медь имеет низкое удельное сопротивление, ниже только у серебра. Это обуславливает хорошую проводимость металла.

Чем толще провод, тем меньше его резистентность. Зависимость R проводника от сечения называется «обратно пропорциональной».

Важно! При увеличении поперечной площади кабеля, электронам легче проходить сквозь кристаллическую решетку. Поэтому, при увеличении нагрузки и возрастании плотности тока, следует увеличить площадь сечения.

Увеличение длины медного кабеля влечет рост его резистентности. Импеданс прямо пропорционален протяженности провода. Чем длиннее проводник, тем больше атомов встречаются на пути свободных электронов.


Выводы

Последним элементом, влияющим на резистентность меди, является температура среды. Чем она выше, тем большую амплитуду движения имеют атомы кристаллической решетки. Тем самым, они создают дополнительное препятствие для электронов, участвующих в направленном движении.

Важно! Если понизить температуру до абсолютного нуля, имеющего значение 0° Kили -273°C, то будет наблюдаться обратный эффект — явление сверхпроводимости. В этом состоянии вещество имеет нулевое сопротивление.


Температурная корреляция

Коэффициент абсорбации.

Порядок действий такой: с момента подачи напряжения нужного значения в Вольтах фиксируются значения за 15 секунд и 60. Далее R15 и R60. Обязательно произвести заземление перед началом и отключено от сети.

Проверка осуществляется между обмотками электрической машины и между обмотками и корпусом. Отдельно две операции. Катушки потребуется соединить между собой последовательно, объединив в одну цепь. Одновременно с этим тестом можно проводит ь замер температуры. Производить данные измерения в помещениях при t выше 10°С.

Наименьшее допустимое сопротивление для R60:

где Uн – номинальное напряжение обмотки в вольтах; Pн – полная мощность (в киловаттах для машин постоянного тока или в киловольт-амперах для машин переменного тока).

Читать еще:  Выключатель света заднего хода 2190

Ну и дальше заветная формула для определения коэффициента абсорбции: Ка = R60 / R15. Есть таблицы, в которых указаны допустимые значения коэффициентов абсорбции для именно вашей модели движка.

Зависимость электропроводности от температуры

Проводники электрического тока бывают первого и второго рода. Проводники первого рода — это металлы. Проводники второго рода- это проводящие растворы жидкостей. Ток в первых переносят электроны, а переносчики тока в проводниках второго рода —ионы, заряженные частицы электролитической жидкости.

Говорить о проводимости материалов можно только в контексте температуры окружающей среды. При более высокой температуре проводники первого рода увеличивают свое электросопротивление, а второго, напротив, уменьшают. Соответственно, существует температурный коэффициент сопротивления материалов. Удельное сопротивление меди Ом м возрастает при увеличении нагрева. Температурный коэффициент α тоже зависит только от материала, эта величина не имеет размерности и для разных металлов и сплавов равна следующим показателям:

  • Серебро — 0,0035;
  • Железо — 0,0066;
  • Платина — 0,0032;
  • Медь — 0,0040;
  • Вольфрам — 0,0045;
  • Ртуть — 0,0090;
  • Константан — 0,000005;
  • Никелин — 0,0003;
  • Нихром — 0,00016.

Определение величины электросопротивления участка проводника при повышенной температуре R (t), вычисляется по формуле:

R (t) = R (0) · [1+ α·(t-t (0))], где:

  • R (0) — сопротивление при начальной температуре;
  • α — температурный коэффициент;
  • t — t (0) — разность температур.

Например, зная электросопротивление меди при 20 градусах Цельсия, можно вычислить, чему оно будет равно при 170 градусах, то есть при нагреве на 150 градусов. Исходное сопротивление увеличится в [1+0,004·(170−20)] раз, то есть в 1,6 раз.

При увеличении температуры проводимость материалов, напротив, уменьшается. Так как это величина, обратная электросопротивлению, то и уменьшается она ровно во столько же раз. Например, удельная электропроводность меди при нагреве материала на 150 градусов уменьшится в 1,6 раз.

Существуют сплавы, которые практически не изменяют своего электросопротивления при изменении температуры. Таков, к примеру, константан. При изменении температуры на сто градусов его сопротивление увеличивается всего на 0,5%.

Если проводимость материалов ухудшается с нагревом, она улучшается с понижением температуры. С этим связано такое явление, как сверхпроводимость. Если понизить температуру проводника ниже -253 градусов Цельсия, его электросопротивление резко уменьшится: практически до нуля. В связи с этим падают затраты на передачу электрической энергии. Единственной проблемой оставалось охлаждение проводников до таких температур. Однако в связи с недавними открытиями высокотемпературных сверхпроводников на базе оксидов меди, охлаждать материалы приходится уже до приемлемых значений.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector