Sv1ca-4.ru

Строй журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулировка выключателей постоянного тока

Как подключить реостат в электрическую цепь постоянного тока

По своему назначению реостаты делятся на следующие виды:

  • пусковые, служащие для снижения пускового тока при запуске электродвигателя;
  • пускорегулирующие, использующиеся преимущественно в двигателях постоянного тока, а также при переменном напряжении в случае асинхронного электродвигателя с фазным ротором;
  • нагрузочные, создающие сопротивление в электрической цепи;
  • балластные, необходимые для поглощения излишков энергии, возникающей например при торможении электродвигателя.

Реостаты применяются и для ограничения тока в обмотке возбуждения электрических машин постоянного тока. Благодаря этому получается добиться снижения скачков электрического тока и динамических перегрузок, способных повредить как сам привод, так и подключенный к нему механизм. Применение сопротивления при пуске продлевает срок службы щеток и коллектора.

Особым видом реостатов является потенциометр. Это делитель напряжения, в основании которого лежит переменный резистор. Благодаря ему в электронных схемах можно использовать различные напряжения, не используя дополнительные трансформаторы или блоки питания. Регулировка силы тока при помощи реостата широко используется в радиотехнике, например, для изменения громкости звучания динамика.

12 Вариантов использования реле дома

Схема подключения РВ на 2 выключателя с задержкой выключения 220в

Реле с задержкой выключения возможно применить для того, чтобы не забывать выключать свет в кладовой или на лестничной площадки. Для этого подключаем светильник через него.

Схема подключения освещения через реле задержки выключения

Чтобы схема работала корректно вместо обычных выключателей нужно использовать переключатели без фиксации в замкнутом положении. Подойдут и обычные кнопки.

Схема работает следующим образом.

  1. Входя в помещение, вы замыкаете выключатель, включая освещение.
  2. Выключатель не фиксируется в замкнутом положении то, отпустив клавишу выключателя, вы сразу прерываете подачу электроэнергии.
  3. Выключения освещения не происходит, лампы подключены через реле с задержкой выключения.
  4. Освещение отключится только после того как пройдет заданное время.
  5. Для защиты перед реле установлен автоматический выключатель, он обесточит устройство, если ток повысится выше заданного при коротком замыкании (согласно ПУЭ пункт 7 3.1.14-19).

Эта схема удобна для длинных коридоров. Освещение можно будет включить с двух сторон помещения. Если такая возможность не нужна, то выключатель можно оставить один.

2 вариант — схема задержка включения лампы накаливания 220в на реле самостоятельно собранном

Эта схема подходит для тех, кто любит мастерить и знаком с радиоэлектроникой. В ней вместо готового устройства, рассчитанное на питание от сети 220 вольт, мы используем реле на 12 как более безопасное. Изготавливаем реле из стандартного электромагнитного с одной контактной группой. Схема переделки и внешний вид прибора показаны на рисунке ниже.

Приведенная схема не рассчитана на работу с мощной нагрузкой из-за ограниченных возможностей контактной группы. Если такая потребность возникает, то нужно ввести промежуточное реле. Нет различия в марках, применимы отечественные РПЛ, РПУ-2М, РП, РЭП или импортные (сегодня их больше на рынке и цена на них ниже, три самых лучших реле с алиэкспресс мы представим ниже).

Посмотрите на картинке: стандартное промежуточное реле. Чтобы вписать его в нашу схему подключаем контакты «N» и «А» не к точкам «L» и «N» а в точки «30» и «87» на предыдущей схеме.

РВ с задержкой включения 220в еще 2 схемы для управления освещением

2 вариант устройства для управления освещением собран на многофункциональных цифровых реле.

Управление освещением на цифровых реле

У цифровых реле гораздо больше возможностей. Задержку получиться выставить не на 10 15 минут, а на длительность больше суток. Есть возможность установить время когда будет включаться свет. 1 вариант подойдет для управления уличным освещением на приусадебном участке. Настраиваем реле для включения в 17 часов и отработки задержки, 13 часов. Уличные фонари будут гореть все ночью, а с рассветом погаснут.

Аппарат подключается и для работы с двумя управляемыми сетями, как на второй схеме. Два канала настраиваются абсолютно независимо.

РВ 220в на элементе от Schneider или другом, экономия электроэнергии до 10 % для кондиционера,

Часто кондиционер включают при открытом окне, так они работают вхолостую и тратят электроэнергию. Выход из ситуации — установка датчика на створке рамы и связь его с линией питания. Но, такой подход тоже не очень верный.

Если вы будете открывать окно на небольшой промежуток времени (впустить кота) то кондиционер будет выключаться, а потом включаться снова. Потребление тока в режиме «пуск-стоп» возрастает, такая работа также не увеличивает долговечность устройства.

Избегаем проблем установив в цепи «датчик-выключатель кондиционера» реле с задержкой выключения. Схема приведена ниже.

Схема включения реле с задержкой выключения для датчика на окне и кондиционера

Схема даже не предусматривает специального реле с задержкой, его функции выполняет обычное промежуточное. Работает она следующим образом.

  1. При открытии окна замыкаются контакты, подается напряжение на реле.
  2. Ток, необходимый для срабатывания, сразу не поступает на соответствующие выводы, а тратиться для зарядки конденсаторов. Для развязки в схему включены диоды.
  3. После того как конденсаторы зарядятся величина тока поднимается до значения нужного для срабатывания реле. Реле отключает кондиционер.
  4. Если окно уже закрыто, то после разрядки конденсаторов (за счет минимального прохода тока в обратном направлении через диод), реле снова подает напряжение на кондиционер.

Р. задержки включения 220в 2 вариант ремонта для холодильника.

Если трудно отыскать штатный датчик температуры затруднительно, вариант — установить любой подходящий. А для того чтобы компрессор не включался-выключался монтируем такую же схему как и для кондиционера.

Модернизация управления 4 стеклоподъемниками

Штатно в машине стеклоподъемники не работают при отключенном зажигании. Возможен случай — остановившись на несколько секунд, мы не можем открыть окно, чтобы рассчитаться с оператором заправки. Для исключения ситуации модернизируем схему управления электрооборудованием, установив реле задержки выключения.

Вариант самодельного реле времени с задержкой на 24 вольта

Предыдущая схема предусматривала питание от блока на 12 вольт. Предлагаем еще вариант, с питанием от сети 24 в. Он подойдет для грузовых автомобилей, в их сети такое напряжение.

Реле с задержкой выключения на 24 вольта

Устройство собирается на отечественных элементах, монтаж навесом. С помощью переменного резистора (он в самом низу схемы) регулируется время задержки выключения.

3-я схема управление стеклоподъемниками на импортных деталях

Если возникают проблемы с приобретением отечественных радиоэлементов, собираем реле с задержкой на импортных. Детали выпаяны из плат вышедшего из строя компьютера. Ниже схема.

Читать еще:  Выключатель автоматический 63а 400в

Схема управления стеклоподъемниками на деталях от материнской платы компьютера

Работает устройство аналогично. Изменяя емкость конденсатора С1 или резистора R2 регулируем время задержки.

Реле времени своими руками

Р. задержки выключения 220в вентилятора за 1 час своими руками

Еще один вариант использования реле с задержкой — управление вентилятором или вытяжкой в душе или уборной. Вот схема для сборки самостоятельно.

Схема управления вентилятором в душе или уборной

Работает она в двух режимах выбираемых с помощью переключателя на реле. Сигнал для срабатывания реле — подача напряжения на освещение комнаты.

Для душа:

  1. В помещении включается освещение.
  2. Вы пользуетесь ванной.
  3. Выйдя, вы выключили свет.
  4. Начинается отработка времени задержки (пока накопится пар).
  5. После задержки включается вентилятор на время необходимое для удаления пара.

Для уборной:

  1. После того как зажегся свет начинается отсчет времени.
  2. Через полминуты или больше (зависит от настроек) включится вытяжка.
  3. Вентилятор работает в протяжении программно заданного времени.

Р. врем. с задержкой выключения варианты 2 и 3, 220в для вытяжки

Предложенную схему есть возможность собрать и на импортных реле, два варианта представлены ниже.

Подключение вытяжки на импортных реле

Алгоритм работы данных схем следующий.

  1. Одновременно с включением освещения включается вытяжка.
  2. После того как освещение выключено начинается отсчет времени.
  3. Когда задержка прошла, вентилятор обесточивается.

Приборы настраиваются на время работы после выключения света то 15 минут. Для изменения задержки достаточно провернуть крестообразной отверткой или любым аналогичным инструментом ручку на их панели.

Схема для вытяжки РВ с задержкой выключения 220в на отечественном компоненте или 2 вариант на устройстве от abb

Вместо специальных реле для вентилятора, используем многофункциональные. На рисунке ниже представлены отечественные модели, но легко найти и выбрать и импортные.

Вариант — выбрать продукцию компании ABB.

Реле времени с задержкой от ABB

Подключаются устройства в цепь питания вентилятора, а затем ручками настраивают время работы и задержки.

Отечественные реле двухканальные, второй канал, возможно использовать для управление освещением. Для этого надо настроить их так лампочка гасла через время достаточное для использования помещения. Достигается экономия электроэнергии, если в доме есть забывчивые люди.

Самодельное Р. для задержки включения автомобильной сигнализации

Еще один вариант использования задержки — включить ее в цепь автомобильный сигнализации. Варианты этой охранной системы блокируют двери сразу после того как вы их закрыли, это не очень удобно, захлопнув машину с ключами и брелоком управления сигнализации остаешься на улице. Если смонтировать реле с задержкой в одну-две минуты у водителя будет время исправить ошибку. Вот вариант схемы.

Схема для задержки включения сигнализации

Устройство собрано на отечественных радиоэлементах навесом включается в цепь питания системы охраны. Изменяя емкость конденсатора можно регулировать время задержки.

Виды и классификация

Применение находят следующие типы отсчета временных интервалов, по которым и производится классификация времязадающих устройств:

  • пневматические;
  • моторные;
  • электромагнитные;
  • часовые (анкерные);
  • электронные.

Следующее различие заключается в значении напряжения питания управляющего электромагнита, которым осуществляется первоначальный взвод исполнительного устройства или механизма и электромагнита, управляющего коммутированием выходных клемм. Наибольшее распространение получили такие типы реле времени по напряжению:

  • 12 В напряжения постоянного тока;
  • 24 В постоянного тока;
  • 220 вольт переменного тока.

Реле времени на 380В используются в трехфазных сетях с включением по схеме «треугольник».

Рабочее напряжение отличается от напряжения коммутации, которое зависит от исполнения и мощности контактных групп. Рабочее напряжение является необходимым для функционирования устройства и должно находиться в строго заданных пределах. Минимальный предел напряжения коммутации не ограничен. При превышении допустимых значений возможен пробой промежутка между контактами.

Такие же требования предъявляются и к току коммутации, превышение которого более допустимого значения чревато обгоранием и спеканием контактных групп, возникновением электрической дуги в момент размыкания.

Значение рабочего напряжения диктуется требованиями безопасности. При этом учитывается то, что чем больше мощность управляющего электромагнита, тем сильнее потребляемый им ток. Наибольшее распространение получили реле времени на 24 вольта, поскольку в данном случае имеется наиболее выгодное сочетание напряжения и тока потребления реле.

В автомобилях используются реле времени с напряжением питания 12 В, поскольку это самое распространенное значение бортовой сети автомобиля. Например, реле времени управления стеклоочистителями и указателями поворота. Контактные группы этих устройств отличаются высокой надежностью, имеют большой запас по величине тока для исключения обгорания, поскольку от исправной работы зависит безопасность движения по дорогам.

Все перечисленные типы допускают выпуск многоканальных реле времени. В таком случае коммутация цепей осуществляется несколькими независимыми группами контактов. В простых конструкциях срабатывание групп происходит одновременно, в сложных — в зависимости от запрограммированного алгоритма.

Большое разнообразие по количеству групп и алгоритму работы предоставляют электронные устройства. Схемы, разработанные с применением микроконтроллеров, имеют малые габариты, которые ограничены только типом и размерами исполнительных элементов, коммутирующих нагрузку.

От соответствия конструкции предъявляемым требованиям зависит надежность работы устройств и механизмов. Выбор реле времени заключается в подборе такого типа, который соответствует всем предъявляемым требованиям, в числе которых:

  • рабочее напряжение;
  • напряжение и ток коммутации;
  • длительность временных интервалов;
  • точность установки выдержки;
  • работа на включение или выключение;
  • регулировка включения и отключения.

Цикличные реле времени

Данный тип реле времени автоматически и непрерывно формирует заданные промежутки времени. Если задать вопрос о том, зачем нужны реле циклического типа, то можно сказать, что наибольшее распространение они получили в автоматических системах управления освещением (уличным, в животноводческих хозяйствах, в аквариумах).

Электромагнитные

Электромагнитные устройства еще называют реле времени с электромагнитным замедлением. Отличаются простой конструкцией и используются в устройствах релейной автоматики. Обмотка электромагнита дополнительно содержит короткозамкнутый виток в виде медного цилиндра, который препятствует быстрому нарастанию и спаду магнитного потока, в результате чего якорь подвижной системы двигается с замедлением. Время задержки на срабатывание составляет от 0,07 до 0,11 секунды, а на отпускание от 0,5 до 1,4 секунды. Недостатки:

  • невозможность коррекции времени задержки;
  • работа только на постоянном токе.

Пневматические

Замедляющим устройством в такой конструкции является пневматический демпфер, воздух в который поступает через калиброванное отверстие. Его проходное сечение регулируется иглой со специальным винтом.

Читать еще:  Как производится расчет автоматического выключателя

Достоинства: не требует подачи питания

  • низкая точность установки времени (свыше 10 %);
  • чувствительность к загрязнению воздуха.

Моторные

Представляет собой синхронный двигатель, который через редуктор передает вращение валу с контактными группами. Может включать в себя электромагнитную муфту, расцепляющую вал двигателя и редуктор. Время выдержки составляет от нескольких секунд до десятков часов.

  • малая точность выдержки времени;
  • работоспособность только в узком диапазоне температур;
  • необходимость в регулярной чистке и смазки механизма.

С часовым или анкерным механизмом

Устроены по принципу механических часов. В промышленности для взвода пружины используется токовая обмотка. Таким образом, чем выше ток в обмотке, тем сильнее сжимается пружина и быстрее ход механизма. Отличаются невысокой точностью установки времени. Настройка механического реле подобна регулировке будильника.

Электронные

Самый распространенный класс устройств. Выполнены на электронных компонентах. В качестве времязадающего элемента применяется генератор тактовой частоты или синхронизация от частоты питающей сети.

Отличаются самыми широкими пределами перестройки частоты. Минимальный интервал составляет единицы микросекунд, а максимальный — дни, месяцы и годы. Перестройка интервала выполняется электронным способом (при помощи переключателей) или программным (путем изменения коэффициентов встроенной программы или посредством интерфейса от внешнего оборудования).

Часовое, суточное или недельное реле часто является опцией в электронных часах.

Электронные реле установки времени предоставляют самые широкие возможности построения цепей управления, включая многоканальные варианты исполнения или цикличный режим работы.

В качестве исполнительной части используются полупроводниковые ключи или электромагниты с различными группами контактов для коммутации нагрузки реле.

Достоинства электронных устройств:

  • самый широкий диапазон установки выдержки;
  • минимальные габариты и вес;
  • высокая надежность;
  • самая высокая точность установки временных интервалов.

Точность выдержки зависит только от стабильности частоты задающего генератора. Использование генераторов на кварцевых элементах с термостабилизацией позволяет достигнуть точности тысячных долей процента.

Недостатки: необходимость в подаче внешнего питания для работы электронных компонентов схемы.

Схемы реле времени имеют большое разнообразие. Среди них встречаются и простейшие, и сложные на основе микроконтроллеров.

Схема автоматического электромеханического выключателя нагрузки

Представленная схема для сборки своими руками поддерживает регулировку отключения в зависимости от токовой составляющей. Точка отключения регулируется в диапазоне 0,5 — 10А переменного / постоянного тока. В схеме используются чип ACS712ELCTR-20A-T (МС1) — датчик линейного тока на основе эффекта Холла. Чип предназначен для измерения тока и обеспечения электрической изоляции между нагрузкой и цепью управления

Среди особенностей электронной схемы устройства следует выделить следующие технические моменты:

  • быстродействие на уровне 1/60 секунды,
  • регулировка тока отключения в пределах 0,5 — 10А,
  • отсутствие потерь напряжения в цепи нагрузки,
  • наличие индикаторов работы,
  • малое энергопотребление в режиме сброса,
  • переменные, фиксированные, асимметричные моменты отключения.

Согласно спецификации реле, используемого в схеме автоматического электромеханического выключателя, максимальное ожидаемое время размыкания контактов составляет 15 миллисекунд (1/66 секунды). Соответственно, имеет место мгновенная работа электронной чувствительной и управляющей части автоматического электромеханического выключателя.

Ограничения регулируемого автоматического электромеханического выключателя нагрузки

Требуется отдельный источник питания для работы в системах переменного напряжения. В случае отключения питания цепь нагрузки замыкается. Схема не предназначена для использования в системах цифрового командного управления (DCC – Digital Command Control), но вполне допускает такой вариант, если параметры на отключение увеличить на 10–15% по сравнению с настройками допустимых систем.

Описание работы электронной схемы устройства выключения

Отсутствие питания схемы автоматического электромеханического выключателя приводит к обесточиванию реле цепи нагрузки, контакты которого остаются замкнутыми, чем обеспечивается подача питания нагрузки. Датчик тока на основе эффекта Холла, включенный в состав микросхемы МС1, выдаёт выходной сигнал, пропорциональный переменному или постоянному току, протекающему через цепь нагрузки.

Принципиальная схема автоматического электромеханического выключателя постоянного/переменного тока с функцией регулировки срабатывания по току, собранного на основе микросхем ACS712ELCTR-20A-T и LM339

Клемма, помеченная на схеме цифрой 2, не подключена к цепям схемы автоматического электромеханического выключателя и не требует подключения для работы в целом.

Таблица электронных компонентов схемы электромеханического автоматического выключателя

ОбозначениеЭлементНоминал
МС1, МС2, МС3микросхемаACS712ELCTR-20A-T, LM339, LM7805
Q1транзистор2N3906
D1, D2Светодиодзелёный, красный
D3, D4, D5, D6, D7Диод1N4002
R1, R5, R7, 8Резистор10 кОм
R2, R4резистор точный +/- 1%3,740 Ом
R3потенциометр10 кОм
R6, R9 (R11), R10Резистор3,3 кОм, 470 Ом, 100 кОм
C1, C2, C3, C4, C5, C6Конденсатор0,1 мкФ; 0,001 мкФ; 2,2 мкФ; 10 мкФ; 1 мкФ; 330 мкФ/35В
S1, S2Кнопка без фиксации1N4002
RY1Реле механическоеRTE24005F

Датчик тока с эффектом Холла микросхемы ACS712 способен создавать положительное или отрицательное выходное напряжение, в зависимости от направления протекания тока. Следовательно, допускается использование с постоянным током любой полярности.

Применение компараторов напряжения в составе схемы устройства

Компараторы напряжения – секции микросхемы МС2A и МС2B, образуют схему детектора напряжения «оконного» типа. Выход одного из компараторов имеет низкий уровень в зависимости от того, высокое или низкое значение напряжения на входах, установленных делителем напряжения, образованным резисторами R2, R3 и R4.

Компаратор напряжения МС2C используется в качестве базового компаратора, выход которого приобретает высокий уровень, когда напряжение на входе в пределах отрицательного диапазона. Микросхемой МС2C зажигается зелёный светодиод — D1 (отключено), когда электромеханический автоматический выключатель переходит в режим «отключено». Компаратор МС2C подчинён компаратору МС2D.

Светодиод D1 также указывает подачу управляющего питания на автоматический электромеханический выключатель. Компаратор напряжения МС2D используется как триггер типа «установка / сброс», выход которого становится низким, если напряжение на входе «плюса» также приобретает низкий уровень. Выход триггера остаётся на низком уровне до момента сброса путём активации кнопки S1 или выключения / включения питания.

Микросхемой МС2D активируется реле RY 1, размыкающее цепь нагрузки. Когда реле активировано, загорается красный светодиод D2, указывающий на отключение автоматического выключателя. Конденсатор С3 гарантирует переключение автоматического выключателя при подаче управляющего напряжения в цепь.

Автоматический электромеханический выключатель: регулировка границ отключения

Потенциометр R3 устанавливает уровень тока отключения для автоматического электромеханического выключателя. Диапазон настройки составляет 0,5 — 10 ампер для переменной / постоянной формы. Схема также может быть построена по принципу нерегулируемого отключения, путём замены потенциометра R3 резистором с фиксированным значением. Значение фиксированного резистора рассчитывается с учётом желаемой настройки границы отключения.

Читать еще:  Как взять питание с выключателя

Таблица номинальных и максимально возможных параметров настройки автоматического электромеханического выключателя на отключение по току. На схеме слева: 1, 6 – питание +5В; 2 – выход сенсора; 3, 8 – земля; 4, 5 – точки подключения вольтметра; 7 – выход на реле

Поддерживается асимметричная настройка с использованием фиксированных резисторов. Например, отключение прямого тока может быть установлено граничным значением 5A, а точка отключения для обратного тока на граничное значение 1A. Этот способ видится полезным в системах с батарейным питанием, где используется функция зарядки.

Кнопочный переключатель S1 используется для сброса автоматического электромеханического выключателя после срабатывания. Внешний выключатель (при необходимости) подключается к плате через клеммы, обозначенные на схеме символами «A» и «B», соответственно. Конденсатор C4 обеспечивает отключение схемы, даже если кнопка S1 удерживается замкнутой в момент перегрузки.

Диоды D4-D7, конденсаторы C5 и C6, стабилизатор напряжения МС3 образуют схему 5-вольтового источника питания, необходимого для микросхемы МС1 и остальной части схемы управления. Два параллельно соединенных полюса механического реле на 8А используются для управления цепью нагрузки. Использование механического реле в качестве устройства прерывания исключает потери напряжения в цепи нагрузки.

Электромеханический автоматический выключатель + у правляющая мощность

Схема управления выключателя нуждается в низковольтном источнике переменного или постоянного напряжения. Эта мощность может поступать от цепи нагрузки с постоянным напряжением или от отдельного источника питания, например, трансформатора, оснащённого штепсельным разъёмом. В качестве примера варианты схем ниже.

Варианты схемного включения: 1, 5 – нагрузка; 2 – источник постоянного напряжения; 3 – сенсор тока; 4 – схема контроля; 6 – источник переменного напряжения; 7 – выборочный источник напряжения (6 – 16В переменное, 10 – 24В постоянное, 100 мА); 8 – подключение дополнительных выключателей (опционально)

Напряжение питания цепей управления (клеммы 4 , 5) не рекомендуется выше значений 16В переменного или 24В постоянного тока. Требование токовых ограничений в данном случае для цепи автоматического выключателя составляет 100 мА, когда реле включено (цепь нагрузки разорвана).

Более одного электромеханического автоматического выключателя допустимо питать от одного источника питания, если источник питания обеспечивает мощность 100 мА на каждый подключенный электромеханический автоматический выключатель. Если для электромеханического автоматического выключателя отсутствует управляющая мощность, цепь нагрузки остается замкнутой.

Электромеханический автоматический выключатель: регулировка тока отключения

Настройка тока отключения электромеханического автоматического выключателя контролируется потенциометром R3. Напряжение на R3 устанавливает точки отключения прямого и обратного тока на электромеханический автоматический выключатель. Резисторы R2 и R3 и R4 образуют регулируемый делитель напряжения с двумя выходными уровнями.

Вольтметр, подключенный через R3 к выводам R2 и R4, используется для регулировки настройки значений отключения. По мере увеличения сопротивления R3, разность напряжений между плюсовым входом микросхемы МС2A и минусовым входом МС2B увеличивается. Этим увеличивается уровень тока отключения цепи в прямом и обратном направлениях.

Электромеханический автоматический выключатель допускает использование для токовых значений:

  • переменной величины,
  • полноволновых постоянной величины,
  • полуволновых постоянной величины,
  • прямой величины,

но для установки точки срабатывания в условиях прямого постоянного тока по сравнению с переменной или полноволновой постоянной величиной, необходимы разные уровни напряжения на потенциометре R3.

Настройка параметра отсечки, необходимого для номинальных максимальных синусоидальных величин, полноволновых и полуволновых постоянных величин, в 1,414 раза превышает настройку параметра под прямой постоянный ток. Разница в уровнях напряжения обусловлена пиковыми напряжениями синусоидальных волн в цепях переменного или постоянного тока.

Для цепей однополупериодного постоянного тока амперметр должен указывать половину уставки пикового тока отключения. Опять же, это связано с природой синусоидальных волн. Если электромеханический автоматический выключатель используется для прямой постоянной величины, максимальный ток отключения 10А в этом случае превышать недопустимо.

При помощи информации: Circuitous

КРАТКИЙ БРИФИНГ

Zetsila — публикации материалов, интересных и полезных для социума. Новости технологий, исследований, экспериментов мирового масштаба. Социальная мультитематическая информация — СМИ .

Пружинные приводы

Эти приводы в качестве двигателя и аккумулятора энергии имеют пружину, которая может быть напряжена через редуктор от небольшого электродвигателя переменного тока. Редуктор представляет собой зубчатую передачу с большим передаточным числом.

Двигатель соединяют с редуктором через фрикционную муфту. Предусматривают также устройство для завода пружины от руки в случае потери источника энергии.

Для включения выключателя необходимо освободить напряженную пружину с помощью особого устройства, управляемого небольшим электромагнитом постоянного или переменного тока. Как только процесс включения закончен, включается электродвигатель и пружина заводится вновь. Теперь привод готов к повторному включению, если такое потребуется. Второе повторное включение (в случае, если первое окажется неуспешным) также возможно, но не ранее чем через 5-10 с после первого включения. За это время пружина будет вновь заведена электродвигателем. Таким образом, пружинный привод с автоматическим заводом от электродвигателя обеспечивает возможность многократного повторного включения с интервалами 5-10с.

Регулировка теплового реле

Для эффективного выполнения функции отключения электродвигателя или другого обслуживаемого аппарата необходимо правильно отрегулировать настройки ТР таким образом, чтобы вероятность ложных срабатываний была исключена. Настройку рекомендуется осуществлять на специализированном стенде способом фиктивных нагрузок:

  • Через термочувствительный элемент пропускают ток для моделирования реальной тепловой нагрузки.
  • С помощью таймера определяют время срабатывания. При проведении настройки с помощью контрольного винта при токе 1,5 Iн время срабатывания должно быть не более 2,5 минут, 5-6 Iн – не более 10 секунд.

3 Replies to “Принцип работы промежуточного реле”

  1. Дмитрий25.07.2020 at 22:49

Как человеку, не совсем компетентному в данном вопросе, статья оказалась очень информативной. Довольно простым языком расписано подключение и регулировка промежуточного реле. Все просто и понятно

Спасибо автору за достаточно емкую и объемную статью. Особенно порадовало видео. На нашем деревообрабатывающем , станке хотели как раз хотели менять такое реле. Специалиста в поселке нету а в город ехать долго и дороговато. Из видео ясно и понятно видно, как можно самому попытаться подключить такое реле.

Автор, большое вам спасибо за очень ценную и полезную информацию, опубликованную в статье. Для меня, не специалиста в области электрики, после прочтения Вашей статьи, где простым и доступным языком описаны все этапы подключения, а также отдельное спасибо за видео, появилась возможность подключить реле самостоятельно, не прибегая к помощи специалистов.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты