Sv1ca-4.ru

Строй журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Управление розетками через ардуино

Алиса, Ардуино и Blynk — делаем собственное устройство

  • 1 Что такое blynk?
  • 2 Собираем «умный» выключатель
  • 3 Итак, blynk.
  • 4 Подготовка Arduino IDE и прошивка
  • 5 Способы управления через Blynk
    • 5.1 С помощью вебхуков
    • 5.2 С помощью мобильного приложения blynk
  • 6 Подключаемся методом webhooks к Умному дому Яндекса
    • 6.1 Кузя
    • 6.2 Приложение «Яндекс»
  • 7 Важный нюанс по управлению через 0 и 1
  • 8 FAQ
    • 8.1 Через Интернет? А как же безопасность?
    • 8.2 При создании кнопки я заметил(а), что есть платные функции в виде покупки энергии для элементов управления
    • 8.3 Можно только по Wi-Fi?
    • 8.4 Почему не использовать готовые решения?
    • 8.5 Что еще можно сделать по этой технологии?
    • 8.6 А считывать состояния Blynk умеет?
    • 8.7 Насколько это надежно? (Китай долго не проработает. )

На данной странице размещена инструкция по простому подключению ардуиноподобных устройств, имеющих доступ к сети. Обязательно пригодится тем, кто:

  • любит «дешево и сердито»;
  • не любит готовые решения, и предпочитает мозговой штурм и пайку;
  • еще думает над своей концепцией УД (можно использовать, как пример);
  • кто «в теме», но пока имеет сложности с подключением собственных наработок к Умному дому Яндекса.

Приложение для телефона позволяющее управлять шаговым двигателем.

Планировал сделать приложение в mit app inventor, но, к сожалению что-то случилось с данным сервисом и приложение для тестирования перестало работать. Возможно, на данный момент все работает, но на момент, когда я делал проект «управление шаговым двигателем по bluetooth» наблюдалась данная проблема. Поэтому сделал приложение в APP Thunkable, по функционалу они очень похожи и исходные материалы приложений будут работать в обоих сервисах.

Интерфейс приложения достаточно простой. Несколько текстовых полей, кнопок, бегунок и список.

Блоки программы для mit app inventor.

Эта часть программы, отвечающая за подключение по bluetooth.

Управление шаговыми двигателями происходит с помощью данных элементов.

Я сделал процедуру, которая позволяет реже отправлять значения при перемещении бегунка.

Вот такое приложение для телефона, позволяющее управлять шаговым двигателем с помощью блютуз.

Для проекта понадобиться следующая электроника:

  • ARDUINO NANO
  • HC-05 hc-06 Bluetooth
  • Шаговый двигатель 28BYJ-48 С ULN2003

Схема подключения шагового двигателя 28BYJ-48, Bluetooth модель HC-05 к Arduino.

Как видно из схемы к Arduino NANO, подключаем шаговый двигатель 28BYJ-48, Bluetooth модель HC-05. Драйвер шагового двигателя ULN2003 запитать лучше от отдельного блока питания 5-12 В.

Если делать умные рулонные шторы, то желательно добавить в схему конечный выключатель. А лучше геркон или KY-003 модуль датчика Холла. На штору поместить магнит. Что позволит определять границы перемещения полотна.

Код (скетч) управления шаговым двигателем на Arduino через bluetooth.

В коде всего 2 переменные, которые нужно поменять в том случае если вы будете использовать другой шаговый двигатель. Первая переменная устанавливает скорость по умолчанию – это 5 оборотов в минуту. Вторая определяет сколько нужно шаговому двигателю сделать шагов, чтобы совершить 1 оборот вала.

Читать еще:  Силовая розетка с узо

В следующем блоке кода подключаем библиотеку AccelStepper, которую можно скачать внизу статьи в разделе «Файлы для скачивания ».

Затем определяем тип двигателя (точнее тип драйвера шагового двигателя), данное подключение можно использовать с другими драйверами, такими как L293, L298 и пр.

Дальше идут переменные, которые нужны для работы алгоритма.

В блоке setup() определяем параметры скорости и ускорения шагового двигателя.

И инициализируем соединение с Bluetooth модулем и скорость работы. У вашего Bluetooth модуля скорость работы может быть другая.

В основном цикле loop() проверяем, пришли данные или нет. Если данные получили, сохраняем их в переменную val и поднимаем флаг.

После поднятия флага проверяем, какую команду получили. Если ни одна не совпадает, то проверяем, возможно, это число скорости вращения шагового двигателя.

Затем переходим к алгоритму управления шаговым двигателем, в котором определяем статус запуска вращения шагового двигателя «flagStart».

После чего, проверяем направление вращения двигателя и устанавливаем скорость вращения с учетом направления.

Следующие 2 строчки заставляют шаговый двигатель сделать один оборот.

И затем мы проверяем, достиг ли шаговый двигатель заданного положения. При достижении нужного положения,обнуляем позицию двигателя это необходимо, чтобы в следующий раз двигатель вращался в нужном направлении и нужное количество оборотов. Или вращался бесконечно, за это отвечает вот это условие.

Такой небольшой код, который можно дополнить и сделать управление рулонными шторами с помощью телефона. А также другие интересные проекты с использованием Arduino и шагового двигателя.

Управляем освещением при помощи датчика освещенности

В этом примере наш блок управления светом будет управлять светом автоматически. Поможет ему в этом датчик освещенности, который будет передавать информацию на микроконтроллер о состоянии текущего показателя освещения. Если освещенность очень низкая, то микроконтроллер будет автоматически включать лампочку, подключенную к сети 220 вольт. Такую систему освещения еще называют адаптивной. Для примера сборки схемы с адаптивным освещением потребуется такое оборудование и ПО:

  • Arduino UNO — одна из разновидностей плат ардуино;
  • Блок реле SRD-12VDC-SL-C;
  • Резистор на 10 кОм;
  • Фоторезистор (выступает в роли датчика освещенности);
  • Arduino IDE — программное обеспечение для загрузки микрокода в микроконтроллер Arduino;
  • Лампочка, подключаемая к сети 220 вольт.

Первым делом соберем схему с помощью этих компонентов изображенную ниже.

Теперь откроем Arduino IDE и внесем в нее такой код:
int s1 = A0; // Выбираем пин для подключения датчика освещенности «Фоторезистора»
int s2; // Переменная, которая будет хранить информацию, получаемую с датчика
void setup() <
Serial.begin(9600); // Устанавливаем последовательный порт для связи
>
void loop() <
// Считываем информацию с датчика:
s2 = analogRead(s1); // Присваиваем значение переменой s2
Serial.println(s2); // Выводим информацию на «Монитор порта» с датчика освещенности
delay(100); // Устанавливаем короткую задержку
>
Этот код не предназначен для включения нашей лампочки. С помощью этого кода мы проверим наш датчик освещенности. Поэтому загрузим этот код в Arduino UNO и откроем «Монитор порта».

Читать еще:  Обжимной инструмент для розеток

В «Мониторе порта» видно, что мы получаем значения с фоторезистора, а это значит, что он нормально функционирует. Теперь пришло время загрузить основной код для автоматического управления светом. Для этого вставьте этот код в Arduino IDE:
int s1 = A0; // Выбираем пин для подключения датчика освещенности «Фоторезистора»
int s2; // Переменная, которая будет хранить информацию, получаемую с датчика
void setup() <
pinMode(2, OUTPUT); // Подключаем второй пин к реле SRD-12VDC-SL-C
Serial.begin(9600); // Устанавливаем последовательный порт для связи
>
void loop() <
// Считываем информацию с датчика:
s2 = analogRead(s1);// Присваиваем значение переменой s2
Serial.println(s2); // Выводим информацию на «Монитор порта» с датчика освещенности
if(s2
Принцип работы этого скетча основан на условном операторе, при котором выполняется условие «s2 int p1 = 8; // Выбираем пин для подключения датчика освещенности «Фоторезистора»
int s1; // Переменная, которая будет хранить информацию, получаемую с датчика
void setup() <
pinMode(2, OUTPUT); // Подключаем второй пин к реле SRD-12VDC-SL-C
Serial.begin(9600); // Устанавливаем последовательный порт для связи
>
void loop() <
s1 = digitalRead(p1); // Считываем информацию с датчика
if (s1 == LOW) < // Условие
Serial.println(«The object does not move»); // Выводим сообщение в «Монитор порта» что объект не найден
digitalWrite(2,LOW); // Отключаем лампочку
>
else <
Serial.println(«The object started moving»); // Выводим сообщение в «Монитор порта» что объект найден
digitalWrite(2,HIGH); //Включаем блок реле SRD-12VDC-SL-C
>
delay(900); // Устанавливаем короткую задержку
>
Принцип работы этой программы детально описан в ее комментариях. Проверить работу датчика можно с помощью «Монитора порта», в котором будут выводиться сообщения «The object started moving» и «The object does not move».

Какие решения предлагает Arduino

Датчики и устройства, совместимые с Ардуино, выпускают многие производители, поэтому ассортимент комплектующих для системы Умный дом на Arduino внушительный:

  • Сенсоры для отслеживания температуры, освещенности в разное время суток, влажности, осадков и атмосферного давления.
  • Сенсоры реагирования на движение.
  • Аварийные датчики.
  • Другие устройства и пульты.

В набор Arduino Start (у большинства производителей – StarterKit) включена часть индикаторов и датчиков.

Для исполнения команд, направляемых системой Умный дом на базе Arduino, требуются:

  • реле и переключатели;
  • вентили;
  • электромоторы;
  • 3-ходовые клапаны с сервоприводом;
  • диммеры.

Примечание: для освещения в системе Умный дом своими руками на базе Arduino используются светодиоды, так как лампы накаливания при подключении через реле сразу горят.

Реле Ардуино: распиновка, характеристики

Реле – это электромеханическое устройство, которое служит для замыкания и размыкания электрической цепи с помощью электромагнита. Принцип работы силового реле srd-05vdc очень прост. При подаче управляющего напряжения на электромагнитную катушку, в ней возникает электромагнитное поле, которое притягивает металлическую лапку и контакты мощной нагрузки замыкаются.

Читать еще:  Розетка накладная с заземлением 4 гнезда

Реле SRD-05VDC-SL-C Ардуино: распиновка, характеристики

Если контакты реле замыкаются при подаче управляющего напряжения, то такое реле называют замыкающим. Если при подаче управляющего напряжения контакты реле размыкаются, а в нормальном состоянии контакты сомкнуты, то реле называется размыкающим. Также реле бывают постоянного и переменного тока, одноканальными, многоканальными и переключающими. Принцип действия у всех одинаковый.

Согласно характеристикам реле SRD-05VDC-SL-C, для переключения контактов достаточно около 5 Вольт 20 мА, выводы на Ардуино способны выдавать до 40 мА. Таким образом с помощью Ардуино мы можем управлять не только лампой накаливания, но и любым бытовым прибором — обогревателем, холодильником и т.д. Полевые транзисторы на Ардуино могут управлять токами только до 100 Вольт.

Что еще можно сделать с использованием PIR-датчика

Теперь, освоив средства отправки электронной почты с Arduino, можно приступить к расширению возможностей проекта. Можно добавить другие датчики, и, например, отправлять себе по электронной почте почасовые отчеты о температуре. Безусловно, PIR-датчик быть использован непосредственно с Arduino без соединения с компьютером. В этом случае при срабатывании датчика можно включать предупреждающий звуковой сигнал, мигать светодиодом, или включать освещение в помещении (через высоковольтное реле).

Смотрите также:

Посты по урокам:

  1. Первый урок: Светодиод
  2. Второй урок: Кнопка
  3. Третий урок: Потенциометр
  4. Четвертый урок: Сервопривод
  5. Пятый урок: Трехцветный светодиод
  6. Шестой урок: Пьезоэлемент
  7. Седьмой урок: Фоторезистор
  8. Восьмой урок: Датчика движения (PIR) и E-mail
  9. Девятый урок: Подключение датчика температуры и влажности DHT11 или DHT22

Все посты сайта “Занимательная робототехника” по тегу Arduino .

Наш YouTube канал , где публикуются видео-уроки.

Не знаете, где купить Arduino ? Все используемые в уроке комплектующие входят в большинство готовых комплектов Arduino, их также можно приобрести по отдельности. Подробная инструкция по выбору здесь . Низкие цены, спецпредложения и бесплатная доставка на сайтах AliExpress и DealExtreme . Если нет времени ждать посылку из Китая — рекомендуем интернет-магазины Амперка и DESSY . Низкие цены и быструю доставку предлагает интернет-магазин ROBstore.

10. Робот-пылесос

Сложность: 4/5.

Время: 5/5.

Дмитрий Иванов из Сочи собрал настоящий робот-пылесос, который делает всё то же самое, что и промышленные устройства, только с возможностью тонкой настройки под себя и свою квартиру.

Основные детали — плата Arduino, 6 инфракрасных датчиков, турбина с двигателем и щётками и аккумулятор. Ещё у робота есть датчики столкновения, которые помогают объезжать препятствия, и контроллер аккумулятора, который следит за уровнем батарей и предупреждает о том, что пылесос надо зарядить.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector