Sv1ca-4.ru

Строй журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ток электрического смещения в диэлектрике формула

Плотность тока проводимости, смещения, насыщения: определение и формулы

В данной статье мы рассмотрим плотность тока и формулы для нахождения различных видов плотности тока: проводимости, смещения, насыщения.

Плотность тока – это векторная физическая величина, характеризующая насколько плотно друг к другу располагаются электрические заряды.

  • Плотность тока проводимости
  • Плотность тока смещения
  • Плотность тока насыщения

Электростатика: элементы учебной физики

Настало время исследовать явления, происходящие при введении в электрическое поле проводников и диэлектриков. К этому моменту учащиеся уже владеют основными понятиями, изучили физические величины, законы электростатики и представляют себе их экспериментальное обоснование. Поэтому они готовы к анализу существующих фактов, выдвижению правдоподобных гипотез, построению теоретических моделей явлений, выводу следствий из предложенных моделей и их экспериментальному обоснованию.

Учебно-исследовательская деятельность теперь может быть организована главным образом в форме постановки и выполнения экспериментальных заданий. Это, разумеется, не исключает более серьёзных работ, направленных на создание новых учебных экспериментов. Большой интерес для учащихся может представить исследование в электрическом поле привычных для них твёрдых, жидких и газообразных объектов. Экспериментальные задания этого этапа помимо прочего должны способствовать углублению сформированных понятий напряжённости и потенциала электрического поля.

7.1. Проводники в электростатическом поле

Проводники отличаются от диэлектриков тем, что у них высока концентрация свободных носителей заряда. В металлах ими являются свободные электроны, которые в отличие от связанных электронов способны перемещаться по всему объёму тела. Появление свободных электронов обусловлено тем, что в атомах металлов валентные электроны слабо взаимодействуют с ядрами и легко утрачивают связи с ними. Поэтому металл представляет собой кристаллическую решётку, в узлах которой расположены положительные ионы, окружённые отрицательным электронным газом.

Внесём в электростатическое поле напряжённостью Е металлическое тело. В первый момент внутри проводника возникает поле той же напряжённости Е. Оно действует на свободные электроны, и те перемещаются против поля Е. По мере перераспределения электронов в проводнике возникает внутреннее поле E, направленное противоположно внешнему полю Е. Электроны перемещаются до тех пор, пока результирующее поле внутри проводника не станет равно нулю: Е = ЕE’ = 0.

Этот факт учащиеся уже неоднократно подтвердили экспериментом. Понятно, что замкнутая проводящая оболочка полностью экранирует находящуюся внутри неё область от внешних электрических полей, следовательно, может являться электростатической защитой.

7.2. Электростатическое изображение

Пусть два одинаковых по модулю и противоположных по знаку точечных заряда +q и –q находятся на некотором расстоянии друг от друга. Созданное ими электростатическое поле характеризуется системами взаимно перпендикулярных силовых линий и эквипотенциальных поверхностей. Одной из таких поверхностей является плоскость, проходящая через середину отрезка, соединяющего заряды. Потенциал этой плоскости равен нулю, т.к., согласно принципу суперпозиции, для точек, находящихся на равных расстояниях r1 = r2 от зарядов:

Теперь совместим с этой плоскостью тонкую проводящую пластину и заземлим её. Поле при этом не изменится, поскольку все точки пластины будут иметь одинаковый (нулевой) потенциал. Если убрать заряд –q, находящийся за проводящей пластиной, то поле перед ней останется прежним.

Отсюда следует, что, если к точечному заряду поднести тонкую проводящую заземлённую пластину, то электрическое поле между зарядом и пластиной будет в точности таким же, как поле, созданное реальным зарядом и его мнимым изображением противоположного знака в пластине, как в зеркале.

Метод электростатических изображений, не отличаясь универсальностью, всё же позволяет упростить решение многих задач.

7.3. Диэлектрики в электростатическом поле

У диэлектриков электроны связаны с атомами и не могут под действием электрического поля свободно перемещаться. Так как концентрация свободных носителей заряда ничтожно мала, электростатическая индукция отсутствует. Поэтому напряжённость поля внутри диэлектрика не обращается в нуль, а лишь в большей или меньшей степени уменьшается.

В этом можно убедиться, поставив следующие опыты. На электрометре закрепим металлическую пластину и зарядим её. Поднесём к заряженной пластине другую металлическую пластину и увидим, что показания электрометра уменьшились. Это объясняется тем, что за счёт электростатической индукции на ближайшей поверхности поднесённого проводника возникает заряд противоположного знака.

Теперь вместо металлической поднесём к заряженной пластине нейтральную диэлектрическую пластину. Вновь увидим, что показания электрометра уменьшились. Значит, и на поверхности диэлектрика в электрическом поле также возникают заряды. Отсюда следует, что диэлектрик, помещённый во внешнее электрическое поле, оказывает на него влияние, создавая своё электрическое поле, уменьшающее внешнее.

В электрическое поле заряженного шара внесём нейтральную диэлектрическую палочку на нити и обнаружим, что палочка поворачивается, располагаясь вдоль силовой линии поля. Значит, палочка становится диполем – концы её приобретают заряды противоположных знаков.

7.4. Полярные и неполярные диэлектрики

Если молекула состоит из двух ионов (K + Сl – ), один из которых положительный, а другой отрицательный, то центры распределения положительного и отрицательного зарядов не совпадают. Такие молекулы и состоящие из них диэлектрики называются полярными.

Если молекула состоит из одного или нескольких одинаковых атомов (например, Н2), то центры распределения отрицательного и положительного зарядов совпадают, и она называется неполярной молекулой, а диэлектрик – неполярным диэлектриком.

7.5. Поляризация диэлектриков

Неполярные атомы и состоящие из них молекулы нейтральны. Полярные молекулы в первом приближении можно считать диполями. Из-за теплового движения полярные молекулы ориентированы беспорядочно, поэтому заряд и напряжённость электрического поля в диэлектрике в среднем равны нулю.

Поместим полярный диэлектрик в однородное электростатическое поле E, созданное параллельными пластинами, которым сообщили заряды противоположных знаков. На диполи в однородном поле действует вращающий момент. В результате молекулы-диполи стремятся развернуться вдоль силовых линий. Чем больше напряжённость поля и ниже температура диэлектрика, а значит, и интенсивность хаотического движения, тем выше степень ориентации диполей.

При помещении в электрическое поле неполярных диэлектриков происходит деформация атомов, в результате чего центр распределения положительного заряда смещается по полю, а центр распределения отрицательного заряда – против поля. Так, неполярная молекула превращается в диполь, ось которого сонаправлена с полем, а длина определяется напряжённостью поля.

Читать еще:  Розетка провода цвет ноль фаза

При внесении диэлектрика в электрическое поле вследствие переориентации или деформации молекул на его поверхностях возникают связанные электрические заряды. Это явление называется поляризацией диэлектрика.

Связанные заряды на поверхности тела создают внутри него электрическое поле E’, направленное противоположно внешнему полю E. Результирующая напряженность Е = E + E’ оказывается меньше E, т.е. Е = ЕE’ U/d. Диэлектрическую проницаемость диэлектрика определите по формуле

Демонстрационный эксперимент целесообразно провести так. Покажите учащимся лист стекла толщиной 4 мм, диэлектрическую проницаемость которого вы будете измерять. Собрав установку, включите высоковольтный источник, установите напряжение U = 0,5 кВ и прикоснитесь его выводами к стержню и корпусу электрометра. Стрелка прибора отклонится. Выключите источник и удалите из промежутка между электродами стеклянную пластину. Стрелка электрометра отклоняется больше. Запомните показание, электрометр разрядите, к нему подключите выводы высоковольтного источника, включите источник и повышайте напряжение до тех пор, пока стрелка электрометра не отклонится на то же число делений. По цифровому измерителю источника прочитайте значение напряжения U между электродами для случая, когда пластина удалена, и по формуле = U/U вычислите значение диэлектрической проницаемости. В наших опытах для пластины из оконного стекла толщиной 4 мм получилось U = 2,1 кВ, следовательно, диэлектрическая проницаемость стекла = 4,2.

Это совсем неплохой результат для демонстрационного опыта. Заметим, что лучше не использовать в качестве диэлектриков полимерные материалы, т.к. придётся специально избавляться от их случайной электризации или поляризации.

Вопросы и задания для самоконтроля

1. Что происходит в проводниках и диэлектриках при внесении их в электростатическое поле?

2. Предложите демонстрационный эксперимент, в котором учащиеся воочию убеждаются, что в проводнике имеются свободные носители заряда, а в диэлектрике они отсутствуют.

3. Детально объясните, почему для определения потенциала в точке поля необходимо использовать пламенный зонд. Возможно ли отказаться от пламени и чем его в таком случае можно заменить?

4. Предложите простой способ, позволяющий в демонстрационным опыте нарисовать эквипотенциальные линии исследуемого электростатического поля.

5. Предложите методику формирования понятия эквипотенциальности поверхности проводника в электростатическом поле.

6. Какие процессы происходят в воздухе вокруг острия, имеющего значительный потенциал относительно Земли?

7. В чём физическая сущность метода электростатических изображений?

8. Детально объясните результат опыта по поляризации диэлектрической плёнки, помещённой в электрическое поле.

9. Оцените дидактическую эффективность методики определения диэлектрической проницаемости стекла непосредственно на уроке.

10. С какой целью и где применяются электреты в современных условиях?

Беляев И.П., Дружинин В.П., Шефер Н.И. Демонстрация электретных свойств диэлектриков. – Физика в школе, 1981, № 6.

Беляев И.П., Дружинин В.П., Шефер Н.И. Исследование электретных свойств диэлектриков. – Физика в школе, 1981, № 3.

Беляев И.П., Дружинин В.П., Рожков И.Н. Электретный эффект: Учебно-методическое пособие. – Оренбург: Изд-во ОГПИ, 1997.

Калашников С.Г. Электричество. – М.: Физматлит, 2004.

Демонстрационный эксперимент по физике в старших классах средней школы. Т. 2. Электричество. Оптика. Физика атома: Под ред. А.А.Покровского. – М.: Просвещение, 1972.

Шахмаев Н.М., Шилов В.Ф. Физический эксперимент в средней школе: Механика. Молекулярная физика. Электродинамика. – М.: Просвещение, 1989.

Продолжение см. в № 24/07

Диэлектрическая проницаемость вещества

Некоторые вещества могут ослаблять взаимодействие зарядов.

Вещества, ослабляющие взаимодействие заряженных частиц, называют изолирующими веществами, или диэлектриками.

Для пояснения рассмотрим электрические свойства дистиллированной воды.

Расположим в вакууме два положительных заряда на некотором расстоянии один от другого, они будут отталкиваться Кулоновскими силами.

Затем, не меняя заряды и расстояние между ними, переместим их в дистиллированную воду. Мы обнаружим, что в воде они будут отталкиваться слабее в 81 раз (рис. 1).

В нижней части рисунка силы отталкивания зарядов в воде обозначены короткими синими векторами. Длина этих векторов должна быть в 81 раз меньше, чем длина векторов сил в вакууме в верхней части рисунка. Однако, векторы имеют большую длину на рисунке, чем в реальности, так как, если их уменьшить в нужное число раз, то их невозможно будет рассмотреть.

Диэлектрическая проницаемость (large varepsilon) описывает изолирующие свойства диэлектриков. Она показывает, во сколько раз внутри вещества — диэлектрика ослабляется взаимодействие зарядов.

Ослабление взаимодействия происходит за счет ослабления напряженности электростатического поля в диэлектрике.

Диэлектрическая проницаемость некоторых веществ

Вы можете использовать данные таблички для решения большинства школьных задач физики.

Для некоторых веществ значения проницаемости округлены. К примеру, существуют стекла, имеющие значение проницаемости 6,0, и в то же время, проницаемость некоторых стекол может достигать значения 10,0. А в таблице для стекла указано среднее значение 8,0.

Чтобы осуществить более серьезные расчеты, не относящиеся к учебным, пожалуйста, воспользуйтесь специализированными справочниками.

Задание. Чему равен вектор поляризации в некоторой точке однородного изотропного диэлектрика, если известен вектор электрической индукции в этой точке ($overline$)? Диэлектрическая проницаемость вещества равна $varepsilon $.

Решение. За основу решения задачи примем определение вектора электрического смещения вида:

Выразим вектор поляризации из (1.1):

Так как по условию рассматриваемый диэлектрик является однородным и изотропным, то:

[overline=varepsilon _0overline left(1.3right),]

Подставим правую часть формулы (1.4) вместо $overline$ в уравнение (1.2), имеем:

Ответ. $overline

=left(1-frac<1>right)overline$

Задание. Между двумя бесконечными заряженными пластинами, несущими одинаковые по величине, но противоположные по модулю заряды поместили пластину из диэлектрика. Пластина сторонних зарядов не имеет. Каков поток вектора электрической индукции через поверхность, которая изображена на рис.2?

Решение. В соответствии с теоремой Гаусса поток вектора электрической индукции равен алгебраической сумме свободных зарядов, которые находятся внутри выделенной замкнутой поверхности (рис.2). Так как по условию задачи свободных зарядов между пластинами и в диэлектрике нет, то поток вектора $overline$ будет равен нулю:

Читать еще:  Штекер для розетки антенны телевизора

Ответ. $ointnolimits_Sdoverline=0 >$

Аморфные диэлектрики

В аморфных диэлектриках с их более рыхлой структурой имеется значительно больше мест, в которых может находиться ион в равновесном состоянии. Затрата энергии при переходе из одного равновесного состояния в другое также будет различна. Будут существовать переходы, требующие меньшей затраты энергии, при которых ион не будет однако полностью освобождаться от связывающих его сил, а, оставаясь «полусвязанным», перемещаться лишь на небольшое расстояние. Эти переходы и будут в основном происходить в результате теплового движения. Некоторое значительно меньшее количество ионов, более богатых энергией, сможет полностью оторваться от связующих их сил. Эти ионы по аналогии со случаем кристаллической решетки можно условно назвать «свободными». Данная картина теплового движения соответствует твердому состоянию.

Переход от твердого к жидкому состоянию

Переход от твердого к жидкому состоянию происходит различно для кристаллических и для аморфных веществ. В первом случае мы наблюдаем резкую t°пл T8, причем вязкость жидкости уже при температуре Тs мала. В случае аморфных диэлектриков t°пл не наблюдается, а переход из одного состояния в другое происходит в первом приближении непрерывно путем постепенного уменьшения вязкости. Более детальное изучение явления перехода из твердого в жидкое состояние показывает однако, что существует некоторая характерная для данного вещества температуpa Тg, при которой вязкость испытывает резкий скачок и вещество, оставаясь весьма вязким, начинает течь.

Ниже температуры Тg вещество следует считать твердым, выше — жидкостью. При температуpax, несколько превышающих Тg, аморфный диэлектрик сохраняет ряд свойств, характерных для твердого состояния. Молекулы диэлектрика остаются еще частично упруго связанными. Чем выше температура, тем слабее эти упругие связи; при температурах, значительно превосходящих Тg, можно в первом приближении считать, что молекулы в жидкости перемещаются свободно. При температуpax, близких к началу размягчения, перемещение молекул хотя уже и является принципиально возможным, но сильно затруднено. Внешне это сказывается в том, что вязкость такой жидкости еще очень велика. При повышении температуры перемещение молекул встречает меньше препятствия; параллельно убывает и вязкость.

За меру того, в какой степени молекулы «свободны» в своих перемещениях, мы можем поэтому выбрать вязкость жидкости. Тепловое движение молекул в жидкостях заключается:

  1. в колебании около положения равновесии, когда они связаны в комплексы,
  2. в поступательных и вращательных перемещениях когда они свободны.

При плавлении кристаллического диэлектрика, имеющих ионную решетку (например солей), получается как правило проводящая жидкость, которая диэлектриком считаться не может. В случае кристаллов с атомной и молекулярной решеткой плавление приводит в диэлектрическим жидкостям, имеющим малую вязкость; перемещение молекул в этих жидкостях можно считать свободным.

Жидкости кроме нейтральных молекул всегда содержат некоторое количество ионов, получившихся как вследствие диссоциации молекул жидкости, так и вследствие диссоциации молекул примесей. В газообразном состоянии как поступательное, так и вращательное движение молекул ничем не ограничено.

7. Уравнения Максвелла

Рассмотрим основные уравнения Максвелла, которые лежат в основе его теории.

1. Каждый заряд окружён электрическим полем (рис. 6), которое действует на другой заряд. Изображаем электрическое поле при помощи силовых линий или линий напряжённости. Густота линий напряжённости обычно ставится в некоторое соответствие значению напряжённости электрического поля.

Произведение напряжённости электрического поля на площадь поверхности, через которую проходят линии напряжённости электрического поля, на косинус угла между нормалью к поверхности и вектором напряжённости – это поток напряжённости электрического поля.

(1)

Допустим, что есть заряд (q), который можем окружить некоторой поверхностью (S), и тогда, для того чтобы высчитать поток, который проходит через всю эту поверхность, мы можем разбить эту поверхность на элементарные бесконечно малые кусочки (∆S) и просуммировать поток по всей площадке. Тогда суммарный поток окажется пропорционален заряду, заключённому внутри этой поверхности. Сумма всех элементарных потоков равна отношению суммарного заряда, заключённого внутри поверхности, к электрической постоянной.

(2)

Уравнение 2 – первое уравнение Максвелла.

2. Магнитное поле прямого тока – это вихревое магнитное поле, в котором магнитные линии замкнуты на себе. Если возьмём поверхность, из которой выходят линии магнитного поля, то сколько линий вышло из неё, столько и вернётся обратно.

Суммарный поток магнитного поля через замкнутую поверхность будет равен нулю.

(3)

Уравнение 3 – второе уравнение Максвелла, которое означает, что магнитное поле вихревое.

3. Третье уравнение Максвелла (5) относится к явлению электромагнитной индукции. Известно, что ЭДС индукции равна скорости изменения магнитного потока, взятого со знаком минус. Также утверждаем, что вокруг изменяющегося магнитного поля возникает вихревое электрическое поле. Это электрическое поле совершает работу по переносу заряда в контуре, если контур оказывается в области изменения магнитного поля. Суммарная ЭДС определяется суммой элементарных ЭДС на всех участках линий напряжённости вихревого электрического поля.

(4)

(5)

4. Прямой ток создаёт вокруг себя магнитное поле. Индукция магнитного поля определяется величиной тока. Однако идея Максвелла заключается в том, что электрический ток может быть не только током проводимости, но и током смещения. В общем случае закон Био-Савара-Лапласа запишем так (6). Суммарное значение индукции на длину линий поля будет равно произведению магнитной постоянной на сумму тока проводимости и тока смещения.

(6)

Так, индукция магнитного поля будет определяться двумя слагаемыми: током проводимости и током смещения.

(7)

Список литературы

1. Буховцев Б.Б., Мякишев Г.Я, Чаругин В.М. Физика 11 кл.: Учебн. для общеобразоват. учреждений. – 17-е изд., преобраз. и доп. – М.: Просвещение, 2008.

2. Генденштейн Л.Э., Дик Ю.И., Физика 11. – М.: Мнемозина.

3. Тихомирова С.А., Яровский Б.М., Физика 11. – М.: Мнемозина.

Читать еще:  Розетка значение цвета проводов

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Классная физика (Источник).

2. Интегральная медицина (Источник).

Домашнее задание

1. Какое электрическое поле образуется при изменении магнитного поля?

2. Каким током объясняется свечение лампочки в цепи переменного тока с конденсатором?

3. Какое из уравнений Максвелла указывает зависимость магнитной индукции от тока проводимости и смещения?

Условия получения и законы

Электроток возникает при воздействии электромагнитного поля на проводник. Но также справедливо и обратное утверждение, доказывающее возникновение электрического поля в результате протекания тока. Важными условиями его получения являются такие факторы: наличие свободных электронов и источника напряжения. Наличие носителей заряда влияет на проводимость, а напряжение является внешней силой, которая способствует «вырыванию» из кристаллической решетки этих частиц.

Проводимость веществ

Носителями заряда в металлах являются электроны. При высокой температуре проводника возникает движение атомов, некоторые из них распадаются и образуются новые свободные электроны. Заряженные частицы взаимодействует с атомами и узлами кристаллической решетки, и часть энергии превращается в тепловую. Этот процесс называется электрическим сопротивлением проводника. Оно зависит от следующих составляющих:

  • Температуры.
  • Типа вещества.
  • Длины проводника.
  • Площади поперечного сечения.

При уменьшении температуры вещества происходит снижение его сопротивления. Зависимость от типа вещества объясняется тем, что каждое вещество состоит из атомов. Они образуют между собой кристаллическую решетку, причем у каждого вещества она разная. Каждый атом имеет определенную электронную конфигурацию, а следовательно, отличается от других наличием носителей заряда.

Кроме того, потоку заряженных частиц сложнее пройти через длинный проводник с маленьким значением его площади поперечного сечения.

Проводником является и электролит или жидкость, проводящая электрический ток. Носителями заряда в жидкостях являются ионы, которые бывают положительно (анионы) и отрицательно (катионы) заряжены. Электрод с положительным потенциалом называется анодом, а с отрицательным — катодом. Перемещение происходит при подаче напряжения на электроды. Катионы перемещаются к аноду, а анионы — к катоду.

При протекании тока через электролит происходит его нагревание, в результате которого увеличивается сопротивление жидкости. Некоторые газы способны проводить электроток тоже. Носителями заряда в них являются ионы и электроны, а сам «заряженный газ» называется плазмой.

Электричество в полупроводниках подчиняется тем же законам, что и в проводниках, но есть некоторые отличия. Представлять носители заряда в них могут электроны и дырки. При уменьшении температуры сопротивление его возрастает. При внешнем воздействии на полупроводник связи в кристаллической решетке ослабевают и появляются свободные электроны, а в месте, где они были, происходит образование дырки. Однако она притягивает другой электрон, который находится рядом. Так и происходит движение дырок. Следовательно, сумма дырочного и электронного электромагнитных полей образует электроток.

Основные соотношения

Все явления подчиняются физическим законам, и электричество не является исключением. Основные соотношения зависимости одной величины от других описаны в законах, которые применяются для расчета различных схем для простых и сложных устройств. Кроме того, правила помогают избежать различных аварийных ситуаций, поскольку электричество может служить и во вред человечеству, вызывая пожары, травмы и даже смерть.

Основным законом, используемым в электротехнике, является закон Ома для участка и полной цепи. Для участка цепи он показывает зависимость силы тока I от напряжения U и электрического сопротивления R и его формулировка следующая: ток, протекающий на участке цепи, прямо пропорционален значению напряжения и обратно пропорционален сопротивлению этого участка (I = U / R).

Для полной цепи, в которой существует электродвижущая сила (e) и внутреннее сопротивление источника питания: формулировка выглядит следующим образом: ток, протекающий в полной цепи, прямо пропорционален электродвижущей силе (ЭДС) и обратно пропорционален полному сопротивлению цепи с учетом внутреннего сопротивления источника питания (i = e / (R + Rвн)).

Из этих законов можно получить следствия, которые нужны для нахождения величин напряжения, ЭДС и сопротивлений. Следствия из законов Ома:

  • R = U / I.
  • U = I * R.
  • e = i * (R + Rвн).
  • R = (e / i) — Rвн.
  • Rвн = (e / i) — R.

Электроток, при прохождении через проводник или полупроводник, совершает работу, при которой выделяется тепловая энергия. Это одно из его свойств. Ее численное значение определяется с помощью закона Джоуля-Ленца.

Закон показывает зависимость количества теплоты от величин напряжения и силы тока, а также времени протекания электротока.

Его формулировка следующая: количество теплоты Q, выделяемое током при протекании через проводник за единицу времени, прямо пропорционально зависит от напряжения и силы тока (Q = U * I * t). Следствия из этого закона следующие:

    • Q = sqr (I) * R * t.
    • Q = (sqr (U) * t) / R.
    • I = Q / (U * t).
    • I = sqrt ((Q / (R * t)).
    • U = Q / (I * t).
    • U = sqrt (Q * R * t).
    • t = Q / (U * I).
    • t = Q / (sqr (I) * R).
    • t = Q / (sqr (U) / R).
  • Q = P * t.
  • P = Q / t.
  • t = Q / P.

Величина Р является мощностью и вычисляется по формуле: Р = U * I. Если электрический ток в цепи не совершает механическую работу и не производит никакого действия, то все электрическая энергия преобразуется в тепловую, т. е. A = Q.

Опытным путем было установлено, что при пересечении линий электромагнитной индукции проводником замкнутого типа в нем появляется электроток. Закон о влиянии электромагнитного поля на возникновение тока называется законом Фарадея. Он гласит: отрицательное значение ЭДС электромагнитной индукции в контуре, который является замкнутым, равно изменению магнитного потока с течением времени. Из закона Фарадея следует, что при движении проводника в постоянном магнитном поле на концах первого возникает разность потенциалов. Этот принцип используется для изготовления генераторов, трансформаторов и т. д.

Таким образом, электрический ток, как все явления и процессы, подчиняется определенным законам, которые позволяют не только контролировать, но и избегать негативных последствий, связанных с его работой. Производить расчеты нужно и для экономии времени, поскольку подбор номинала какого-либо элемента схемы может привести к выходу из строя устройства.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector