Sv1ca-4.ru

Строй журнал
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ток потребления светодиода при последовательном соединении

Расчет светодиодов

Расчет светодиодов — LED-диод, это неотъемлимый элемент современной электроники, который используется практически во всех радиоэлектронных устройствах. Принцип его работы следующий: при подачи на него определенного значения постоянного тока, прибор начинает светится.

Существуют светодиоды различных цветов свечения, которое обусловливается применяемым материалом для его изготовления.

Специфика включения светодиодного прибора

Вольт-Амперная характеристика у светодиода аналогична той, которую имеет стандартный диод полупроводникового типа. Вместе с тем, когда в цепи светодиода возрастает напряжение прямой направленности, идущий через него ток стремительно увеличивается. Взять для примера фирменный светодиод зеленого свечения, то если подавать на него прямое напряжение в диапазоне от 1.8v до 2v, ток может увеличиться в пять раз, то есть составит 10мА.

Следовательно, включение светодиода по схеме прямой направленности напряжения, даже при незначительном увеличении напряжения, постоянный ток может повысится до критической величины. А при возрастании тока до пикового значении, чревато выходом из строя светодиода.

Поэтому, что бы предохранить данный полупроводниковый прибор от возможного пробоя, подавать на него напряжение необходимо от стабилизированного источника тока, то есть — драйвера.

При использовании драйвера с постоянным стабилизированным током обеспечиваются лучшие характеристики излучения светодиода, и, кроме того, увеличивается срок его работы. Однако такие источники тока дорогие и используются только для ответственных случаев.

В случае, если цепь со стабилизированным напряжением в схеме отсутствует, тогда для защиты светодиода применяется постоянный резистор в качестве ограничивающего ток сопротивления. Такой гасящий резистор включается последовательно в цепь светодиода. Чтобы точно определить номинальное значение такого резистора, нужно воспользоваться ниже приведенной формулой:

Это популярный в радиоэлектронике закон Ома, с помощью которого можно легко определить номинальное значение сопротивления на определенном участке электрического тракта.

R — сопротивление, Ом;
U — напряжение на участке цепи, В;
I — ток, протекающий в цепи, А.

В общем, принцип расчета сопротивления такой: определяем требуемую величину рабочего тока прибора — Iсв и номинальное напряжение для его работы — Uсв. При этом нужно учитывать постоянное напряжение, от которого питается вся схема — Uпит, далее уже высчитывается номинальное значение ограничительного сопротивления — Rогр:

Коэффициент 0,75 в этом случае применяется для сохранения определенного запаса.

Получив номинальное значение сопротивления, теперь необходимо найти наиболее приближенный к нему номинал постоянного резистора.

Теперь нужно определить мощность рассеивания гасящего резистора:

Pрас — мощность, рассеиваемая на ограничивающем резисторе, Вт;
Iсв — ток светодиода, А;
Rогр – сопротивление ограничивающего резистора, Ом.

Узнав мощность рассеивания ограничительного резистора, теперь нужно найти компонент с предельно допустимыми параметрами.

Включение светодиодов по параллельной и последовательной схеме

Используя параллельное включение LED-источника, следует помнить, что в случае задействования только одного гасящего сопротивления может привести к его перегреву.

Применяя схему параллельного включения LED-приборов, необходимо в разрыв цепи диода всегда устанавливать свой, персональный резистор ограничения тока. Способ расчета номинальной мощности и сопротивления этого резистора высчитывается аналогичным методом, приведенным выше. Используя схему последовательного включения, цепь желательно составлять из идентичных друг другу приборов.

Помимо этого, нужно взять во внимание то, что действующее в схеме напряжение должно составлять немногим большее значение, чем потребляющее всеми LED-диодами одновременно

Вычисление номинала ограничительного резистора для использования в схеме последовательного соединения, производится таким же образом, как показано выше. Хотя, есть некоторое исключение, состоящее в том, что при подсчете, взамен значения Uсв применяется значение Uсв*N. В приведенном примере буква N означает число соединенных в цепь LED-приборов.

Расчет резистора для подключения светодиодов на видео

Светодиод, в основном, имеет 2 вывода: длинный вывод (анод) соединяется с плюсом питания, более короткий вывод (катод) с минусом. Светодиод, подключенный наоборот не будет светиться, и кроме того, при превышении определенного напряжения может даже сгореть.

Рис. 1 — Цоколевка светодиода

Расчёт резистора для светодиода — очень важный момент перед подключением светодиода к источнику питания. От этого зависит то, как будет работать светодиод. Если резистор будет иметь слишком маленькое сопротивление, то светодиод может выйти из строя (перегореть), а если сопротивление будет слишком велико, то светодиод будет излучать свет слабо.

Светодиод — это элемент, питаемый током (не напряжением!). Поэтому правильно подобранный ток, напрямую влияет на срок службы светодиода.

Чтобы правильно сделать расчеты, нужно знать прямой ток (forward current) и прямое напряжение (forward voltage) светодиода.

Типовыми параметрами для одноцветных светодиодов диаметром 5 мм являются:

  • красный светодиод: 20 мА / 2,1 В;
  • зеленый светодиод: 20 мА / 2,2 В;
  • желтый светодиод: 20 мА / 2,2 В;
  • оранжевый светодиод: 25 мА / 2,1 В;
  • синий светодиод: 20 мА / 3,2 В;
  • светодиод белый: 25 мА / 3,4 В.

Эти значения параметров светодиода могут незначительно отличаться в зависимости от экземпляра и производителя светодиодов.

Рис. 2 — Схема подключения светодиода

Расчёт резистора для светодиода производится по следующей формуле:

Uист — напряжение источника питания (В).

UVD — напряжение питания светодиода (В).

I — ток светодиода (мА, А)

Убедитесь, что выбранный вами электрический ток меньше максимального, на который рассчитан светодиод. Переведите эту величину из миллиампер в амперы. Таким образом результатом вычисления будет величина сопротивления резистора в омах (Ом).

Если рассчитанная величина сопротивления резистора не совпадает со стандартным номиналом резисторов, необходимо выбрать ближайший больший номинал. В прочем, Вы можете изначально захотеть выбрать несколько большее сопротивление, для экономии электричества например. Но надо помнить, что излучение светодиода в этом случае будет менее ярким.

Пример.

Имеется источника питания с напряжением 9 В и красный светодиод ( UVD = 2 В, I = 20 мА = 0,02A). Рассчитать сопротивление ограничительного резистора.

Решение

R = (9 — 2) / 0,02 = 350 [Ом].

Необходимо выбрать резистор сопротивлением 390 Ом (ближайшее большее значение).

Нашим источником питания, как и в предыдущих упражнениях, является кассета из 4 батареек, дающие напряжение около 6 В. Теперь встает вопрос: как подобрать резистор для ограничения тока красного светодиода, подключенного согласно следующей схеме:

Наша батарея обеспечивает напряжение порядка 6 В. Красному светодиоду необходим ток около 20 мА. Плюс ко всему нужно учесть падение напряжения на этом светодиоде, т. е. 2,1 В:

Теперь достаточно подставить наши данные в формулу:

Таким вот простым способом мы рассчитали сопротивление резистора R1 для красного светодиода, который должен иметь сопротивление минимум 195 Ом. Но вы не сможете найти резистор такого номинала! Что же делать в таком случае? Надо взять из номинального ряда резистор большей величины, но с максимально близким сопротивлением.

Ближайший в номинальном ряду резисторов находится резистор с сопротивлением 200 Ом, и именно такой мы должны использовать в нашей схеме. Почему? Конечно, ничто не мешает нам использовать резистор большего сопротивления, например, 470 Ом, 2,2 кОм. Но как это повлияет на свечение нашего светодиода? Давайте проверим!

На фото этого конечно не заметно, но светодиод светит очень ярко с резистором 200 Ом. Но что случится, если мы заменим резистор на другой, с большим сопротивлением, например, 470 Ом? Светодиод по-прежнему горит. Дальше будем последовательно увеличивать сопротивление: 2,2кОм, 3,9кОм, 4,7кОм. Обратите внимание, что светодиод с увеличением сопротивления резистора светит все слабее и слабее пока, наконец, вообще не перестает светиться.

Еще одно замечание по существу — необходимо использовать резисторы немного больше, чем это следует из расчетов (например, 210 Ом вместо 200 Ом). Почему? Наверно вы обратили внимание, что для расчетов мы взяли номинальное напряжение нашей батареи, в реальности свежие батарейки могут давать более высокое напряжение и поэтому сопротивление резистора может быть недостаточным. Ток на светодиоде будет выше необходимого, что в конечном счете скажется на сроке его службы.

Пример.

Рассчитать резистор для схемы , в которой последовательно соединены два красных светодиода (прямой ток 20 мА, прямое напряжение 2,1 В).

Решение

Рис. 3 — Последовательное соединение двух светодиодов

Величину сопротивления резистора R1 рассчитываем аналогично, как в примере выше, с той лишь разницей, что от напряжения бортовой сети автомобиля (14 В), необходимо вычесть падение напряжения на обоих диодах VD1 и VD2:

Теперь подставим данные в формулу:

R1 = 9,8 / 0,02 = 490 [Ом]

Читать еще:  Розетка для оптического аудио кабеля

Резистор R1, к которому подключены последовательно два красных светодиода, должен иметь сопротивление минимум 490 Ом. Ближайший в ряду является резистор номиналом 510 Ом. Если у вас нет резистора номиналом 510 Ом, помните, что вы можете соединить последовательно несколько резисторов, например, 5 резисторов по 100 Ом.

Можно ли в этой схеме последовательно подключить еще 5 светодиодов? Нет! Каждому красному светодиоду нужно 2,1 В. Легко подсчитать, что батарея на 14 В не в состоянии обеспечить такое напряжение:

Пример.

Предположим, что светодиод — VD1 красный (прямой ток 20 мА, прямое напряжение около 2,1 В), а светодиод VD2 имеет белый цвет (прямой ток 25 мА, прямое напряжение 3,4 В) (рис. 4).

Рис. 4 — Параллельное соединение светодиодов

Из первого закона Кирхгофа мы знаем, что:

I = 20 + 25 =45 [мА]

Подключая светодиоды параллельно к источнику питания, следует помнить, что каждый светодиод должен иметь свой резистор! Теперь давайте посчитаем падение напряжения на каждом из резисторов:

Зная силу тока и напряжение, можно вычислить сопротивления:

Резистор R1 должен иметь сопротивление как минимум 195 Ом (ближайший в номинальном ряду резистор на 200 Ом), а резистор R2 должен иметь сопротивление не менее 104 Ом (ближайший в ряду будет на 120 Ом).

Как лучше соединять светодиоды: последовательно или параллельно? Ответ не простой, потому что оба варианта имеют свои плюсы и минусы:

Сравнительная характеристика последовательного и параллельного соединения светодиодов

последовательное соединениепараллельное соединение
для всех светодиодов достаточно одного резисторакаждый светодиод должен иметь свой собственный резистор
повреждение одного светодиода приводит к отключению всей цепочки светодиодовпри повреждении одного или несколько светодиодов, остальные светодиоды будут светятся
низкое значение токаток в цепи увеличивается с каждым последующим светодиодом (ток каждой ветви суммируется)
требуется более высокое напряжение источника питания с учетом падения напряжения на каждый из светодиодовнапряжение питания в схеме может быть низким

Рассмотрим расчет подключения мощных светодиодов. Мощные светодиоды используются, например, в автомобилях.

Рис. 5 — Мощный светодиод в автомобиле

Мощный светодиод имеет прямой ток 350 мА и падение напряжения 3,3 В. Рассчитаем сопротивление для мощного светодиода:

Для нашего примера надо подобрать резистор минимум 31 Ом. Помимо соответствующего сопротивления резистор должен иметь соответствующую номинальную мощность, т. е. допустимую мощность, которая выделяется на резисторе при его работе. Слишком большая мощность может повредить резистор.
Мощность вычисляем по следующей формуле:

Номинальная мощность рассчитанного резистора — это минимум 3,7 Вт. Поэтому резисторы мощностью 0,25 Вт быстро сгорят. В приведенном выше примере необходимо применить резистор на 5 Вт, но лучшим решением использование нескольких резисторов по 5 Вт, соединенных последовательно или параллельно. Причина в том, что резисторы плохо отводят тепло (хотя бы из-за их формы), а использование нескольких резисторов сразу увеличит общую площадь поверхности, через которую происходит отдача тепла.

Рис. 6 — Резисторы с различной номинальной мощностью

При подборе резистора для мощного светодиода необходимо дополнительно учитывать значительное повышение температуры самого светодиода, что вызывает изменение прямого тока. Поэтому лучше взять резистор большего сопротивления, что обеспечит стабильную работу светодиода при увеличении прямого тока из-за его нагрева во время работы.

Но на практике для питания мощных светодиодов применяют стабилизаторы тока.

Общее правило при подборе резистора (резисторов) для светодиодов является использование чуть большего сопротивления, чем это следует из расчетов. Прямой ток и падение напряжения, протекающие через светодиод лучше измерить мультиметром, чтобы в расчетах учитывать реальные параметры конкретного светодиода.

Пример

Имеются светодиоды с рабочим напряжением UVD = 3 В и рабочим током IVD = 20 мА. Надо подключить N=3 светодиода к источнику Uпит = 15 В.

Рис. 7 — Последовательное соединение трех светодиодов

Расчет:

Вычисляем суммарное падение напряжения на светодиодах:

UVD сум UVD = 3 В и рабочим током IVD = 20 мА. Надо подключить N=4 светодиода к источнику Uпит = 7 В.

Расчет:

Напряжения 7 B не хватит для последовательного подключения светодиодов, поэтому будем подключать их последовательно-параллельно. Разделим их на две группы по 2 светодиода.

Рис. 8 — Последовательно-параллельное соединение четырех светодиодов

Теперь надо сделать расчет токоограничивающих резисторов. Аналогично предыдущим пунктам делаем расчет токоограничительных резисторов для каждой ветви.

Так как светодиоды в ветвях имеют одинаковые параметры, то сопротивления в ветвях одинаковые.

Пример.

Если имеются светодиоды разных марок то комбинируем их таким образом, чтобы в каждой ветви были светодиоды только ОДНОГО типа (либо с одинаковым рабочим током). При этом необязательно соблюдать одинаковость напряжений, потому что мы для каждой ветви рассчитываем свое собственное сопротивление

Например имеются 5 разных светодиодов:

  • красный (3 В, 20 мА),
  • зеленый (2,5 В, 20 мА),
  • синий (3 В, 50 мА),
  • белый (2,7 В, 50 мА),
  • желтый (3,5 В, 30 мА).

Так как разделяем светодиоды по группам по току
1) красный и зеленый;
2) синий и белый;
3) желтый.

Рис. 9 — Последовательно-параллельное соединение пяти светодиодов

Рассчитываем для каждой ветви резисторы:

R1 = (7-(3+2,5))/0,02 = 75 Ом

Аналогично для других ветвей:
R2 = 26 Ом.
R3 = 117 Ом.

Аналогично можно расположить любое количество светодиодов

ВАЖНОЕ ЗАМЕЧАНИЕ. При подсчете токоограничительного сопротивления получаются числовые значения которых нет в стандартном ряде сопротивлений,
поэтому подбираем резистор с сопротивлением немного большим чем рассчитали.

Что будет если имеется напряжение источник с напряжением 3 В (и меньше) и светодиод с рабочим напряжением 3 В?

Допустимо (НО НЕЖЕЛАТЕЛЬНО) включать светодиод в цепь без токоограничительного сопротивления. Минусы очевидны – яркость зависит от напряжения питания. Лучше использовать dc-dc конвертеры (преобразователи повышающие напряжение).

Можно ли включать несколько светодиодов с одинаковым рабочим напряжением 3 В параллельно друг другу к источнику 3 В (и менее)?

Опять, это допустимо в радиолюбительской практике. Минусы такого включения: так как светодиоды имеют определенный разброс по параметрам, то будет наблюдаться следующая картина, одни будут светится ярче, а другие тусклее, что не является эстетичным, что мы и наблюдаем в приведенных выше фонариках. Лучше использовать dc-dc конвертеры (преобразователи повышающие напряжение).

ЗАМЕЧАНИЕ! Представленные выше схемы не отличаются высокой точность рассчитанных параметров, это связано с тем, что при протекании тока через светодиод происходит выделение тепла в нем, что приводит к разогреву p-n перехода, наличие токоограничивающего сопротивления снижает этот эффект, но установление баланса происходит при немного повышенном токе через светодиод. Поэтому целесообразно для обеспечения стабильности применять стабилизаторы тока, а не стабилизаторы напряжения. При применении стабилизаторов тока, можно подключать только одну ветвь светодиодов.

Источники

Электроника © ЦДЮТТ • Марсель Арасланов • 2019

Последовательное соединение

В последовательном включении светодиодов нужно соблюдать правило: «Напряжение источника питания должно быть больше суммы падений напряжений на светодиодах». Остаток напряжения в неравенстве гасится одним единственным резистором R, правильное включение которого показано на схеме. Все светодиоды подключаются поочередно от анода к катоду. Сопротивление резистора задаёт ток цепи. Это значит, что соединять последовательно можно светодиоды только с одинаковым рабочим током.

Пример расчета

Расчет сопротивления и мощности резистора проведём на примере включения трёх белых светодиодов из серии Cree XM-L, для которых характерным является ток ILED = 0,7 А и прямое напряжение ULED = 2,9 В. Взяв за основу цветовую температуру и требуемую яркость, можно последовательно подключать светодиоды из разных групп в пределах серии XM-L. Например, один Cree XM-L-T6 с ТС=5000°K и два Cree XM-L-T2 с ТС=2600°K, которые в итоге дадут мощный поток нейтрального света. Питание на схему поступает от блока стабилизированного напряжения U = +12 В. Сопротивление резистора находим по закону Ома: Ближайший стандартный номинал – 4,7 Ом, при котором ток теоретически будет равен 0,702 А. Это не критично, но следует быть уверенным, что сопротивление резистора не изменится под влиянием температуры во время работы. Поэтому устанавливать нужно либо прецизионный резистор с допуском менее 1%, либо последовательно с R1 = 4,7 Ом запаять ещё одно сопротивление 0,1-0,2 Ом такой же мощности.

Найдём мощность резистора: По аналогии с расчётами для первой схемы устанавливать нужно резистор примерно с двойным запасом по мощности, то есть один на 5 Вт. Можно его заменить на два штуки по 2 Вт, но тогда придётся пересчитать сопротивление.

Читать еще:  Сечение обратного кабеля по току

Паралельно и последовательно. Объясните чайнику

evidence » 09 июн 2014, 02:17

Собственно, в предыдущую тему о создании 20 прожекторов в цех, столкнулся с тем, что хочу использовать массив из 50-ти светодиодов Кри — 3в, 500-550мА, но не соображаю ничего в электрике, и хочу пододбрать максимально эффективный драйвер.
Т.е., если я запитываю последовательно все 50 штук, то мне нужен драйвер, способный выдавать, к примеру, 550ма и 150 с лишним вольт. А если я хочу запитать параллельно по 25 штук? Мне нужен драйвер на 1100мА, но сколько нужно вольт? 150 или же тоже в два раза меньше, т.е. 75 ?

Смотрю в сторону Meanwell LPC серии. А может и HLG, но они в 3 раза дороже. В раздумиях, вообщем

Заранее благодарен за разъяснения

Re: Паралельно и последовательно. Объясните чайнику

Invisible_Light » 09 июн 2014, 03:27

При параллельном соединении токи суммируются 550*25=13.750 мА (13,75А). Напряжение равно одному диоду =>3V. Итого 6-7V. Но какой смысл?? При параллельном соединении большого количества далеко разнесённых диодов начнёт сильно влиять сопротивление проводов. Как следствие, будет большое падение на проводах, перекос напряжений и токов на диоды. Ближние к подключению диоды будут в дикой перегрузке, дальние в недогрузке. Вся схема посыплется как карточный домик, если будет предусмотрена стабилизация выходного тока с источника.
Неспроста предпочтительно именно последовательное соединение диодов — ток единый во всей цепи, независимо от возможной разности падений напряжения на разных диодах.

Похоже, вы хотите запитать две параллельные цепи по 25 последовательно? Из ваших расчетов так получается.
Лучше запитывать раздельными драйверами последовательные цепи.

Re: Паралельно и последовательно. Объясните чайнику

evidence » 09 июн 2014, 21:44

Re: Паралельно и последовательно. Объясните чайнику

Invisible_Light » 09 июн 2014, 22:01

Re: Паралельно и последовательно. Объясните чайнику

казанец » 09 июн 2014, 22:04

Re: Паралельно и последовательно. Объясните чайнику

evidence » 09 июн 2014, 22:46

Re: Паралельно и последовательно. Объясните чайнику

Дилетант » 09 июн 2014, 23:25

При последовательном соединении (в цепочку один за другим) напряжения для отдельных диодов суммируется. Если, например, падение напряжения одного светодиода (это и есть напряжение, требуемое для одного светодиода) 3,2В (вольт) и вы соедините последовательно 25 штук таких светодиодов, то понадобится источник питания, который обеспечивает напряжение не меньше чем 3,2В х 25 = 80В. Если вы соедините 50 таких светодиодов, понадобится 3,2В х 50 = 160В. При этом ток, который потребуется для этой ветки последовательно соединенных светодиодов, нужен будет один и тот же и равен он току, который требуется отдельному светодиоду. Если один светодиод требует, например, 350мА (милиампер), то и 25 и 50 таких светодиодов, соединенных последовательно в одну цепочку, потребуют тоже 350мА.

Если же вы соедините параллельно две, три или более цепочек светодиодов, состоящих из 50 светодиодов каждая, всей конструкции все равно понадобится 160В. Параллельное подсоединение новых веток не увеличивает требуемого напряжения. Параллельное соединение увеличивает потребляемый ток. Например, если отдельный светодиод (и вся последовательная цепочка) требует 350мА, а вы соединяете параллельно две такие ветки, то всей конструкции понадобится уже
350мА х 2 = 700мА. Если соедините 3 такие ветки, то понадобится 350мА х 3 = 1050мА и т.д.

Re: Паралельно и последовательно. Объясните чайнику

evidence » 10 июн 2014, 02:46

Спасибо, доходчиво и понятно! Но меня все же смущает одно: почему в приведенной мной выше ссылке, подключено две параллельные линейки по 12 светодиодов, которые в сумме потребляют 24 * 3.2 = 76,8 вольт к драйверу, который выдает максимум 48В. По амперажу, понятно — суммируется, т.е. диоду нужно 600ма, драйвер выдает 1200ма, но так как параллельных линий две, каждому выдается 600. Но вот с вольтажом не понятно.

А самая нижняя линейка? Все тех же, но уже, 48 диодов, подключено к драйверу, который выдает максимум 48В, но 3.2А. И указано, что они рекомедуют такую конфигурацию и такой драйвер, если нужно запитать 4 линейки по 12 штук светодиодов «прожорливостью» 3.2В и 700-800мА.

Меня ставят в тупик именно эти «маневры» с вольтажом

Re: Паралельно и последовательно. Объясните чайнику

Invisible_Light » 10 июн 2014, 03:03

Re: Паралельно и последовательно. Объясните чайнику

evidence » 10 июн 2014, 04:29

Re: Паралельно и последовательно. Объясните чайнику

Invisible_Light » 10 июн 2014, 08:08

Re: Паралельно и последовательно. Объясните чайнику

evidence » 11 июн 2014, 02:32

Re: Паралельно и последовательно. Объясните чайнику

казанец » 11 июн 2014, 13:07

Специально для Вас!
. Применение драйверов на практике

Большинство людей, планирующих использовать светодиоды, совершают типичную ошибку. Сначала приобретаются сами СИД, затем под них подбирается драйвер. Ошибкой это можно считать потому, что в настоящее время мест, где можно приобрести в достаточном ассортименте драйвера, не так уж и много. В итоге, имея на руках вожделенные светодиоды, вы ломаете голову — как подобрать драйвер из имеющегося в наличии. Вот купили вы 10 светодиодов — а драйвера только на 9 есть. И приходится ломать голову — как быть с этим лишним светодиодом. Может быть, проще было сразу на 9 рассчитывать. Поэтому выбор драйвера должен происходить одновременно с выбором светодиодов. Далее, нужно учитывать особенности светодиодов, а именно падение напряжения на них. К примеру, красный 1 Вт светодиод имеет рабочий ток 300 мА и падение напряжения 1,8-2 В. Потребляемая им мощность составит 0,3 х 2 = 0,6 Вт . А вот синий или белый светодиод имеет при таком же токе падение напряжения 3-3,4 В, то есть мощность 1 Вт. Стало быть, драйвер с током 300 мА и мощностью 10 Вт «потянет» 10 белых или 15 красных светодиодов. Разница существенная. Типовая схема подключения 1 Вт светодиодов к драйверу с выходным током 300 мА выглядит так :

подключение светодиодов к драйверу 300 мА

У стандартных 1 Вт светодиодов минусовой вывод больше плюсового по размеру, поэтому его легко отличить.

Как же быть, если доступны только драйвера с током 700 мА ? Тогда придется использовать четное количество светодиодов, включая их по два параллельно.

подключение светодиодов к драйверу 700 мА

Хочу заметить, что многие ошибочно предполагают, что рабочий ток 1 Вт светодиодов — 350 мА. Это не так, 350 мА — это МАКСИМАЛЬНЫЙ рабочий ток. Это означает, что при продолжительной работе необходимо использовать источник питания с током 300-330 мА. Это же верно и для параллельного включения — ток на один светодиод не должен превышать указанной цифры 300-330 мА. Вовсе не значит, что работа на повышенном токе вызовет отказ светодиода. Но при недостаточном теплоотводе каждый лишний миллиампер способен сократить срок службы. К тому же чем выше ток — тем ниже КПД светодиода, а значит, сильнее его нагрев.

Если речь пойдет о подключении светодиодной ленты или модулей, рассчитанных на 12 или 24 вольта, нужно принимать во внимание, что предлагаемые для них источники питания ограничивают напряжение, а не ток, то есть не являются драйверами в принятой терминологии. Это означает, во первых, что нужно внимательно следить за мощностью нагрузки, подключаемой к определенному блоку питания. Во-вторых, если блок недостаточно стабилен, скачок выходного напряжения может погубить вашу ленту. Слегка облегчает жизнь то, что в лентах и модулях (кластерах) установлены резисторы, позводяющие ограничить ток до определенной степени. Надо сказать, светодиодная лента потребляет относительно большой ток. Например, лента smd 5050 , количество светодиодов в которой составляет 60 штук на метр, потребляет около 1,2 А на метр. То есть для запитки 5 метров понадобится блок питания с током не менее 7-8 ампер. При этом 6 ампер потребит сама лента, а один-два ампера нужно оставить про запас, чтобы не перегружить блок. А 8 ампер — это почти 100 ватт. Такие блоки недешевы.
Драйверы более оптимальны для подключения ленты, но найти такие специфические драйвера проблематично.

Подытоживая, можно сказать, что выбору драйвера для светодиодов нужно уделять не меньше, а то и больше внимания, чем светодиодам. Небрежность при выборе чревата выходом из строя светодиодов, драйвера, чрезмерным потреблением и другими прелестями

Читать еще:  Параметры токов для сечения кабеля

Системы СД напряжением 220 В

Такие диодные системы самые распространенные. Светодиоды с последовательным соединением, рассчитанные на 220 В, служат для освещения больших помещений, применяются в мощных прожекторах, в уличном освещении, сигнальных системах аэропортов и т.д.

Приведенный вариант последовательного соединения на 220 В представляет простейший способ подключить цепочку диодов с малым числом компонентов.

Альтернативный тип подключения

Последовательно-параллельное соединение светодиодов – встречается в прожекторах и других мощных светильниках, работающих как от постоянного, так и от переменного напряжения.

Как видите, матрица поделена на ветки, каждая из которых имеет токоограничивающий резистор. Конкретный экземпляр предназначен для замены штатной лампы плафона в салоне автомобиля. Если один диод выйдет из строя – одна цепь перестанет гореть, а остальные цепочки продолжат свечение.

Если вы не можете определиться, как подключить светодиоды последовательно или параллельно, есть альтернативный вариант — гибридное соединение. С первого взгляда непонятно в чем смысл.

Гибридный вариант принял достоинства от последовательного и параллельного соединения светодиодов. Схема будет работать полностью, даже если один из элементов в цепи перегорит, в тоже время остальные элементы не испытают перегрузки. Напряжение на каждом сегменте будет ограничено светодиодом с наименьшим падением.

Чтобы собрать светильник правильно, а LED работали долго и не перегревались, нужно определиться как подключать светодиоды — последовательно или параллельно. Вы ознакомились с сильными и слабыми сторонами каждого из вариантов. Благодаря полученным знаниям можно выполнить ремонт LED лампы или прожектора.

Материалы по теме:

ДЛЯ ВАС ПО ТЕМЕЕЩЕ ОТ АВТОРА

Как правильно подключить RGB светодиодную ленту к контроллеру. Правильные схемы с описанием

SMD 3528, 5050, 5630, 5730 параметры и технические характеристики

Правильный расчет резистора для светодиода, подбор резистора по цветовой маркировке + онлайн калькулятор

3 способа замены галогеновых ламп на светодиодные в люстре

КПД светодиодного светильника (светодиод + питание + форм-фактор)

Регулировка яркости LED. Все о диммерах для светодиодных ламп

8 КОММЕНТАРИИ

  1. Кирилл 11 января, 2018 at 11:24

Фигово сделан светильник.
Надо оставлять как можно больше металла на плате, чтоб улучшить теплоотвод.

Сколько смотрю схемы включения светодиодов, но так и не понял: зачем нужен токоограничивающий резистор, если при последовательном соединении сумма падений напряжений помещается в рабочий диапазон? К примеру 12В/4шт=3 вольта на каждом, или вполне так себе в рабочем диапазоне, судя по опыту и графику в статье: примерно семнадцать миллиампер, при том что светодиоды повышенной яркости нормально работают и при двадцати. Просто для страховки?

Тоже в недоумении, как и Дмитрий. Снял свою люстру специально посмотреть, каким образом осуществлен первый режим ее включения — светодиодный. Что выяснил: пребразователь-выпрямитель от сети

220 выдает постоянное 265V. 93 светодиода в последовательной цепи без всяких резисторов. Снял показания: падение напряжения на каждом скачет в пределах примерно 2,7-2,9V, ток цепи 0,053А (тоже нестабилен, меняется в пределах +-0,004А). Прихожу к выводу, что в схеме выпрямиться стабилизатора тока нет (вскрывать не стал, т.к неразборная конструкция). Почитал инетик — везде однозначно утверждается, что такой режим работы светодиодов крайне нежелателен: скачки тока, да еще и его завышение относительно номинального 0,02А для белых диодов в 2,5 с лишним раза! Однако этот режим включения люстры используется всегда и подолгу, работает она уже лет 7, и не похоже, чтобы собиралась перегорать. Диоды — 5-и миллиметровые «соломенные шляпки». Короче, непонятно мне, как так… Буду благодарен, если кто-нибудь разъяснит это всё.

Сейчас объясню. Весь интернет забит полубреднями на тему подключения светодиодов. Ключевая фраза: «Светодиоды питаются током». ****** необразованные. В электронике ВСЁ питается током! Все схемы рассматриваются с точки зрения прохождения ТОКА! Ну да ладно. Теперь по существу. Светодиоды МОЖНО запитывать без резистора. МОЖНО. Это я для интернетных упорошей такими большими буквами написал. Ещё раз повторю — можно. Но есть нюансы.
1. Вы должны четко соблюсти температурный режим. То есть ни при каких условиях не допускать перегрева. При перегреве меняется ток потребления, а компенсировать нечем. Светодиод сдохнет.
2. Вы имеете гарантированное, стабилизированное напряжение питания. При превышении напряжения меняется ток потребления, а компенсировать нечем. Светодиод сдохнет.
3. Не используете светодиоды в предельном режиме. У светодиода со временем присутствует некоторая деградация параметров и можно выскочить за приемлемый ток. Далее лавинообразное увеличение тока а компенсировать нечем. Светодиод сдохнет.
4. Без токоограничивающих резисторов или источников питания можно не попасть в приемлемый токовый диапазон питания светодиодов. К примеру напряжение питания 5В. А светодиод у вас потребляет номинальный ток при 3,4. Что будете делать? Поставить два? Будет не хватать и может плохо светить. А если один, то сгорит.
Поэтому чтобы получить от светодиода номинальную отдачу придется или делать нестандартное напряжение питания под конкретный светодиод или вводить токоограничивающие элементы.
Вот так вот всё просто.
Это кстати единственное ВМЕНЯЕМОЕ объяснение во всём рунете.

  • Платон 2 марта, 2018 at 04:04

Лично я иногда использую схему без резистора.
Например заменил лампочки в салоне УАЗ + установил дополнительное освещение (для работы со сваркой).
Но не так все просто, да я убрал токоограничивающий резистор, включил 3 светодиода последовательно, НО для стабилизации применил 7809 с регулировкой (резисторы в цепи минуса), таким образом подбирается оптимальный ток.
Для светодиодов 5730 ток в пределах 80 мА (на радиаторе) и вполне нормально работает много лет

Ты гадёныш !
ОТКУДА родом — ты не из РОССИИ.
все лампочки в продаже из—— ДОГАДАЙСЯ?——Китай
все фонарики и другое свето——-ИЗ КИТАЯ
Раша — (НАКЛЕЙКИ приклёпывает)
НА али заказал УФ фонарик-прислали ,недорого,упакован.
на почте вскрывать не стал. ПОЖАЛЕЛ ! что не вскрыл…..
Корпус фонарика поцарапан линза стекла косо стоит.
при вставке бат— нет свет.
доработка на 400 руб.
форнарик 50руб.
ЭТО ДВИГАТЕЛЬ ОТ *РОСНАНО*

Михаил, не надо быть таким категоричным. Похоже Вы просто не в курсе, что есть источники тока и источники напряжения. Так вот, светодиодные лампы правильнее питать от источника тока(питать током). Это делает работу ламны слабо зависимой от температуры. При её изменении меняется падение прямого напряжения и, соответственно, при использовании источника напряжения резко меняется ток. При питании от источника тока, такого не происходит. При закорачивании вышедшего из строя светодиода (при питании током), ток через оставшиеся светодиоды изменится незначительно. Зависит от качества источника.
Учите матчасть :))

  • Сергей 17 февраля, 2021 at 14:28

Вы наверное сами не знаете, но источники тока стабилизируют ток УМЕНЬШАЯ НАПРЯЖЕНИЕ, или УВЕЛИЧИВАЯ НАПРЯЖЕНИЯ. Посмотрите на блоки питания для светодиодов, там указана разбежка напряжения 60-120 вольт, и ФИКСИРОВАННЫЙ ТОК 120 миллиампер. Когда вы подключите к нему светодиодную ленту, блок чтобы установить 120 миллиампер, будет подбирать НАПРЯЖЕНИЕ, при котором будет установлен именно этот ток в 120 миллиампер. Если вы потом померяете напряжение, оно скажем будет на ленте 80 вольт и ток в цепи будет 120 миллиампер.
ТАК ВОТ! Что вам мешает подать на ленту сразу 80 вольт при которых на ленте и будет этот ток в 120 миллиампер! А другого собственно быть и не может. Единственно что надо убедиться это как сказал михаил чтобы в процессе работы ленты она не перегрелась, не изменилось сопративление её диодов и ток не увеличился выше 120 миллиампер. Если это соблюдается, то можно питать ленту от ФИКСИРОВАННОГО НАПРЯЖЕНИЯ при котором через ленту будет течь ток в 120 миллиампер.

Заключение

Правильно собирайте схемы в светильниках. Не подключайте энергосберегающие лампы последовательно и придерживайтесь схемы включения люминесцентных и галогенных светильников. Энергосберегающие лампы «не любят» пониженное напряжение и быстро сгорят, а люминесцентный светильник может и вовсе не зажечься.

Для подключения освещения подойдут клеммные колодки или зажимы Wago, тем более, если проводка алюминиевая, а провода у светильника медные. Главное – соблюдайте правила безопасности при работе с электрическими приборами.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector