Sv1ca-4.ru

Строй журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Светодиодные драйверы регулируемого тока

LED-драйвер со стоимостью BOM-а меньше 1$. Это возможно?

Разработка LED-драйвера – интересная и комплексная задача. Рынок в этом направлении весьма насыщен – иногда кажется, что производство светодиодных светильников везде. Начиная от гаража и заканчивая огромными заводами. Что касается драйверов, гиганты типа Philips или Meanwell с одной стороны, добротные китайцы вроде Moso и Billion с другой, noname китайцы с третьей… В этих условиях к инженерным составляющим (схемотехнической и конструкторской) добавляется задача оптимизации изделия по цене.

Итак, рассказываю про разработку LED-драйвера при существенном ограничении по цене комплектующих.

В своей предыдущей статье я провёл небольшой анализ требований, предъявляемых к светодиодному оборудованию, а также нормативной документации, описывающей эти требования. Настало время рассказать про разработку. Как известно «без ТЗ – результат непредсказуем», с этого и начнём.

Назначение и сфера использования

Ввиду того, что в основе лед-элемента лежит полупроводниковый кристалл, главным параметром, влияющим на его светотехнические характеристики, в частности, яркость, является сила тока, а не напряжение, как, например, у лампочек накала. В задачу драйвера как раз и входит преобразование переменного тока в постоянный, то есть его стабилизация.

Для светодиодных светильников это крайне важно. В противном случае частота свечения их будет постоянно колебаться и сама лампочка – мерцать. Это скажется не только на комфорте ее зрительного восприятия, но и на долговечности. В таких условиях прибор не отработает даже половины заявленного производителем срока службы.

Область применения драйверов для светодиодных светильников достаточно широка:

  1. Подсветка для улиц, парков, фасадов сооружений, мостов, памятников и прочих конструкций.
  2. Помещения различного назначения – жилые дома, цеха, склады, производственные объекты, торгово-развлекательные комплексы, офисы.
  3. Светодиодные ленты всевозможного назначения.
  4. Оптические системы транспортных средств.
  5. Спецсигналы.
  6. Карманные фонари, беспроводная подсветка, и прочие автономные компактные и переносные светоисточники.

Обратите внимание! В зависимости от типа светодиодного светильника, параметров его питания и сферы использования существует несколько видов драйверов. Для led-ламп общего назначения (офиса, дома, торговых центров, улиц) применяются преобразователи, работающие от сети переменного тока 220В, для лед-фонарей, автофар, автономных приборов освещения – модели, рассчитанные на низковольтное постоянное напряжение 3-48 вольт, для слабомощных диодов, напрямую подключаемых в бытовую сеть – резисторные вариации.

Как я запускал мощный светодиодик. Драйвер 100Вт светодиода.

Решил проапгрейдить свою систему освещения. Для этого прикупил на DX светодиодик.

Данный светодиодик достаточно мощный и светит чистым белым цветом, без всякого постороннего желтоватого или синеватого оттенка.

Что было до этого

Юзал я для освещения вот такую сборку из 10 белых светодиодиков по 1 Вт.

В качестве драйвера — вот такой сундучок)

Там небольшой трансик, платка управления на меге, линейный драйвер светодиодика (после ШИМа и RC-цепочки). В общем, всё довольно тупо. Из-за небольшой мощности, небольшого падения напряжения и большого радиатора, ничего не грелось. Кроме трансика)

Впрочем, решено было данную систему проапгрейдить. 10 Вт — фии для светолюбивого человека вроде мя.)

Первый вариант схемы

В качестве драйвера мощного светодиодика я решил применить бустерный стабилизатор. Бустер хорошо умеет регулировать ток и может повысить напряжение до требуемых светодиодику 32 вольт.

В инете нарылся калькулятор бустера, в который я вбил приблизительные данные.

Вот, что получилось.

Что же, выбираем детальки.

Для управления подойдёт тинька 26L — дешёвая, имеющая быстрый асинхронный таймер, тактируемый от 64 МГц, АЦП.

Из силовухи — мосфитик IRLU024N, с логическим управлением, непрерывный ток стока до 17 А. Дросселей решил сделать несколько разных, потом методом тыка выбрать наиболее удачный.

В качестве нагрузки, которую не жалко (да и не просто) убить — обычная лампочка на 36 вольт. Вот такая схемка получилась.

Недолго думая, собрал. Дроссель, который на фотке — от какого-то китайского компового блока питания, с выхода 3.3 В. Он, кстати, и остался в окончательной версии.

Тиньку пока повесил просто на проводочках. Прошивка считывает положение переменного резистора и выставляет соответствующее заполнение ШИМа. Частота ШИМа — 125 кГц.

Что же, смотрим напряжение на лампочке и повышаем заполнение до тех пор, пока не получим нужные 36 вольт. Выходная мощность — 60 Вт. Лампочка ярко светит секунд 30, затем кондёры немножко надуваются, а силовой транзистор выпаивается из платки. Фейл. (

Читать еще:  Светозвуковой оповещатель переменного тока

Второй вариант схемы

Оказывается, у мосфитов есть очень вредный параметр — заряд затвора (Qg). Например, для нашего IRLU024N он равен 15 нКул. То есть, затвор полностью заряжается за 15 нс током 1 А. А жалкие 20 мА с тинькиной ножки зарядят затвор куда медленней, где-то за 750 нс. Учитывая, что период ШИМа при частоте 125 кГц составляет 8000 нс, заряд-разряд отъедает почти 40% времени ton (при заполнении 50%), вот транзистор и греется как самовар.

Чтобы ускорить этот процесс, юзаются специальные драйверы затвора. Например, IR4428 (IR4426, IR4427). Такой драйвер может выдать импульс в несколько ампер, который быстро перезарядит затвор. А ещё у драйвера есть триггер Шмитта на входе, так что кривая форма входного сигнала ему не страшна.

От «логических» мосфитиков я решил отказаться. В конце концов, был выбран дубовый IRF3205.

Входные и выходные конденсаторы зашунтированы мелкой керамикой, для фильтрации мощных импульсных токов.

Вот что получилось.

Дорожки силового контура пропаял толстым проводом.

Без этого дорожки будут жутко греться)

Новая схемка заработала куда лучше. Выходная мощность 60 Вт, схемка чуть греется (без радиатора). КПД чуть меньше 90%. Поставил на транзистор и диод небольшой радиатор и подцепил вторую лампочку. Выходная мощность 120 Вт, схемка греется, но опасений за её жизнь не возникает)

Испытания

Собрал платку управления.

Прошивка считывает рабочие ток и напряжение светодиодика и компенсирует разницу между текущим и заданным значением, изменяя заполнение ШИМа.

Требуемая мощность выбирается кнопочками и отображается светодиодной линейкой. DS1820 прицеплен к радиатору светодиодика. При нажатии двух кнопочек сразу, на светодиодной линейке отображается температура.

При превышении рабочего напряжения, тока или температуры, девайс уходит в защиту.

Второй канал ШИМа заюзан для регулировки оборотов вентилятора, обдувающего радиатор светодиодика. Вентилятор подключен к такому простенькому драйверу.

Запихал всё в ту же коробочку)

Кнопочками задаётся мощность — 3.2, 6.4, 12.8, 25.6, 51.2 или 102.4 Вт.

Сам светодиодик приделан к какому-то радиатору, купленному в ДНСе рублей за 50.

Что можно сказать о мощности?)

3.2 Вт. Полумрак. Мона юзать как фоновую подсветку при работе за компом.

12.8 Вт. Аналог моей предыдущей лампочки. Вполне мона работать.

51.2 Вт. Уже посветлее. Можно возиться с SMD мелочёвкой и не обязательно придвигать лампочку близко к себе. Удобно)

102.4 Вт. Визуально не очень сильно отличается от 51.2 Вт. Но самому девайсу явно приходится куда туже) Светодиодик пышет жаром, подводящие провода сильно греются. Руку под светодиодиком нельзя держать дольше нескольких секунд. В нескольких сантиметрах перед светодиодиком плавится целофановый пакетик.

Полная моща. Дело было ночью.

Спасиб Vga за помощь в разработке девайса!

upd: Выяснилось, что разнести контроллер и силовую часть на разные платки — далеко не лушчая идея. Лучше всё сделать на одной платке, и силовые линии сделать потолще.

Конструкция и детали сборки

Выбор элементов, расположенных в обвязке микросхемы PT4115, следует производить на основании рекомендаций изготовителя. В качестве CIN рекомендуется использовать конденсатор с низким ESR (эквивалентным последовательным сопротивлением). Данный параметр является вредным и негативно влияет на КПД. При питании от стабилизированного источника достаточно одного входного конденсатора ёмкостью не менее 4,7 мкФ, который должен быть размещен в непосредственной близости от микросхемы. При питании от источника переменного тока компания PowTech указывает на необходимость монтажа танталового конденсатора ёмкостью более 100 мкФ.

Типовая схема включения PT4115 для 3w светодиода подразумевает установку катушки индуктивности на 68 мкГн, располагать ее следует максимально близко к выводу SW PT4115.

Катушку индуктивности можно сделать своими руками, используя кольцо из старого компьютера и провод ПЭЛ-0,35.

К диоду D выдвигаются особые требования: малое прямое падение напряжения, малое время восстановления во время переключения и стабильность параметров при росте температуры p-n перехода, чтобы не допустить увеличения тока утечки. Этим условиям отвечает диод Шоттки FR103, способный выдерживать импульсы тока до 30А при температуре до 150°C.

Читать еще:  Источник тока для светодиодных сборок

Наконец, самый прецизионный элемент схемы драйвера для 3w светодиода – резистор RS. Минимальное значение RS=0,082 Ом, что соответствует току 1,2 А. Его рассчитывают, исходя из необходимого тока питания светодиода, по формуле:

RS=0,1/ILED, где ILED – номинальное значение тока светодиода, А.

В схеме включения PT4115 для 3w светодиода значение Rs составляет 0,13 Ом, что соответствует току 780 мА. В магазинах не всегда можно найти резистор такого номинала. Поэтому придется вспомнить формулы расчета суммарного сопротивления при последовательном и параллельном включении резисторов:

Таким образом, можно с высокой точностью получить нужное сопротивление из нескольких низкоомных резисторов.

В заключение хочется ещё раз подчеркнуть важность стабилизации тока, а не напряжения для обеспечения нормальной длительной работы мощных светодиодов. Известны случаи, когда в светодиодах китайского происхождения ток плавно продолжает нарастать в течение некоторого времени после включения и останавливается на значении, превышающем паспортный номинал. Это приводит к перегреву кристалла и постепенному снижению яркости. Драйвер для 3w светодиода на микросхеме PT4115 – это гарантия стабильной светоотдачи в сочетании с высоким КПД при условии эффективного отвода тепла от кристалла.

Типы драйверов светодиодных ламп

Linear

Linear, или просто линейный драйвер, является самым простым и дешевым драйвером. На его плате присутствуют только самые необходимые элементы. Основная его функция – преобразование переменного тока в постоянный, он не защищает светодиоды от перепадов напряжения в сети. Чаще всего этот тип драйвера используется в лампах, в которых недостаточно места для размещения более сложных типов драйверов и в маломощных лампах. Например, Linear драйвер часто используют в филаментных лампах.

Linear драйвер – это плата с электронными компонентами, которая преобразовывает переменный ток в постоянный.

Constant Linear драйвер.

Linear IC

Linear IC драйвер (Integrated Circuit — интегральная микросхема) отличается наличием простой IC микросхемы. Такой драйвер защищает лампу от перепадов напряжения в узком диапазоне, но не от перепадов силы тока и всё ещё является бюджетным решением для LED лампы. Linear IC драйвера используются во всех типах светодиодных ламп и светильников.

Linear IC драйвер – это плата с электронными компонентами, преобразовывающая переменный ток в постоянный и содержащая микросхему стабилизирующую напряжение.

DoB Linear IC драйвер.

IC

Самый сложный – это IC драйвер . В нём больше всего компонентов что делает его более массивным, но и более надёжным в работе. Наличие IC микросхемы позволяет драйверу контролировать не только поступающее на светодиоды напряжение, но и силу тока. Высокочастотный EMC-фильтр устраняет помехи, создающиеся при преобразовании тока, а трансформатор (или катушка) снижает входящее напряжение до уровня, необходимого для стабильной работы светодиодов. Такой драйвер обеспечивает продолжительную работу светодиодной лампы и используется во всех видах лампочек и светильников.

IC драйвер – это плата с электронными компонентами, которая преобразует переменный ток в постоянный и содержит микросхему, стабилизирующую входящее напряжение и силу тока.

Constant IC драйвер с компонентами, размещёнными на одной стороне платы.

Электронные компоненты IC драйвера могут быть расположены как на одной стороне платы, так и на обеих. Размещение на обеих сторонах обеспечивает лучшее охлаждение компонентов и увеличивает срок их службы.

Constant IC драйвер с компонентами, размещёнными на разных сторонах платы.

Драйвер светодиода из КЛЛ своими руками

Наверняка у многих без дела лежат сгоревшие компактные люминисцентные лампы (КЛЛ), у которых сгорела нить накала в колбе люминисцентной лампы. Как правило, у таких ламп преобразователь напряжения исправен, и его можно заиспользовать в качестве импульсного блока питания или драйвера светодиода. Типовая схема импульсного преобразователя КЛЛ представлена ниже

Для переделки импульсного преобразователя КЛЛ в драйвер светодиода, достаточно удалить «лишние детали», обведённые красной пунктирной линией. Это цепи запуска лампы.

Повисший в воздухе вывод дросселя L1 подпаять к плюсовой дорожке блока, намотать на него вторичную обмотку, и добавить диодный мост, спаянный из быстродействующих диодов серии HER, FR, UF и им подобных.

Для начала на дроссель наматываем 10 витков провода в лаковой изоляции, подпаиваем выводы намотанной обмотки к диодному мосту, подаём на лампу сетевое напряжение и замеряем выходное напряжение. В моём случае блок выдал 6,5В. Этого напряжения явно маловато для запитки 10Вт светодиода. Я домотал ещё 10В и подключил светодиод через амперметр, который показал проходящий через светодиод ток в 1А. У моего светодиода рабочий ток равен 900мА. Я отмотал 1 виток с дросселя и получил нужный ток. Собрал диодный мост на плате навесным способом, подпаял 2 провода, удалил стеклянный балон КЛЛ и собрал корпус преобразователя.

Читать еще:  Подсоединение выключателя света проходной

В КЛЛ мощность преобразователя ограничено габаритной мощностью сердечника установленного дросселя, и мощностью транзисторов. Для переделки я взял 15Вт лампу, дроссель которой с лёгкостью может отдать в нагрузку 15Вт. Для 10Вт светодиода больше никаких переделок не требуется. Если планируется запитать более мощный светодиод, требуется взять преобразователь от более мощной лампы, либо установить дроссель с большим сердечником.

Светодиод укрепил на радиаторе, предварительно смазав его термопастой.

Радиатор закрепил проволокой к корпусу преобразователя. Таким образом собрал светодиодную лампу, затратив минимум средств.

В результате несложной переделки КЛЛ, мы получили отличный драйвер для мощного светодиода, Продлили жизнь преобразователя КЛЛ.

  • Назад
  • Вперед

Связанные статьи

Мощный Шокер-Фонарь своими руками

При создании любой конструкции возникает вопрос о корпусе. Для шокера, ещё и вопрос маскировки под безобидное устройство. Оригинальное решение — это разместить схему.

Мощный шокер на 555 таймере

Шокер состоит из обратноходового импульсного преобразователя, нагруженного на 4-х каскадный умножитель. Источником питания служат две аккумуляторные батареи Varta 6F22 9V.

Мощный электрошокер на К555ЛН1

Ради интереса попробовал собрать шокер на микросхеме К555ЛН1. Шокер получился достаточно мощным, с питанием 7,2 Вольт (пальчиковые аккумуляторы размера АА).

Паяльник из электронного трансформатора

Паяльник изготовлен из готового блока питания для галогеновых ламп китайского производства, мощностью 180Вт. Схема — это классический полумостовой преобразователь. Блок.

Важные моменты, которые стоит учитывать при выборе драйверов

Вольт – амперная характеристика у осветительных приборов, таких как светодиоды, под воздействием температуры изменяется. У разных моделей она имеет свои незначительные отличия. Стоит это учитывать при подключении схемы собственными руками. Повышающий яркость драйвер осветительных приборов должен давать постоянный ток в различных случаях. То есть его функции должны выполняться независимо от того, изменились ли характеристики светодиодов или произошел скачок входного напряжения. Любой драйвер (диммируемый, из специальным стабилизатором прочее), должен обеспечивать поступление тока к осветительному прибору согласно его эксплуатационным характеристикам.

Простыми драйверами для светодиодов (на 10 w и больше) есть такие микросхемы, как LM 317. Они имеют свои отличие от резисторов. Микросхемы данного типа надежны в эксплуатации, их производство не занимает много времени и требует больших затрат расходного материала. Но все же они имеют недостатки. Микросхемы LM 317 отличаются низким КПД. Для них характерно малое входное напряжение.

Питание светодиодов от сети 220 В с помощью шим – стабилизаторов тока более практичное в эксплуатации. Активная мощность на драйвере минимальная. Шим – стабилизатор – это электронная схема специального назначения. Ее разработали для того, чтобы производить постоянный ток для питания осветительных приборов наилучшим способом. Такие драйверы используют в rgp пикселях. Шим – стабилизаторы дают дополнительные функции в управлении. С помощью драйверов можно регулировать питание от сети 220 В, яркость и цвет rgp пикселя. Управление осуществляется с помощью, подключенных к шим – стабилизаторов, микроконтроллеров. Такие драйвера, как WS2801 или LDP8806, можно наблюдать на каждом rgp пикселе светодиодной ленты с управлением.

Так, как технологии прогрессируют стоимость мощных светодиодов (1 Вт и больше) уже достаточно доступная. Исходя из этого, приборы все чаще используют для освещения. Чтобы эффективность мощных светодиодов была высокой, их нужно правильно запитать, можно от сети 220 В. Самодельный драйвер, повышающий яркость освещения, можно собрать по простой схеме, основанной на дискретных элементах. Выходная мощность – 15 Вт, резервная – 0,5 Вт. Схема защищает от короткого замыкания.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector