Какое давление тока используется в электрических лампах 1
Тепловое действие тока используется 1)в люминесцентной лампе 2)в электрическом двигателе 3)в электрической лампе накаливания 4)в электромагните СРОЧНО ПОМОГИТЕ ПОЖАЛУЙСТА?
Физика | 5 — 9 классы
Тепловое действие тока используется 1)в люминесцентной лампе 2)в электрическом двигателе 3)в электрической лампе накаливания 4)в электромагните СРОЧНО ПОМОГИТЕ ПОЖАЛУЙСТА.
Электрической лампе я знаю.
Общие выводы
Таким образом, рассматривая тему как распространяется электрический ток в разных средах, можно отметить: в газах упорядоченное движение начинается под воздействием электрического поля.
Электрический ток в различных средах – растворы и расплавы электролитов. Многие электролиты в обычном своем состоянии являются диэлектриками. Но после растворения их в воде, эти вещества становятся проводниками. Данный процесс получил название электролитической диссоциации. Электрический ток в разных средах раствором протекает под воздействием внешнего электрополя. При этом одни ионы движутся к катоду, а другие – к аноду.
Виды газовых разрядов
Искровой разряд – это прерывистый самостоятельный лавинообразный разряд в газе, вызванный ударной ионизацией и сопровождающийся треском и ярким свечением. Искровой разряд возникает при условии, когда мощность источника недостаточна для поддержания непрерывного разряда.
Дуговой разряд впервые был получен в 1802 году российским академиком В. В. Петровым. При соприкосновении электродов в цепи возникает сильный ток короткого замыкания, что приводит к сильному нагреванию электродов. Затем электроды постепенно раздвигаются. Ток продолжает идти через межэлектродное пространство, заполненное высокотемпературной плазмой. Концы электродов раскаляются до 3000-4000 градусов и начинают испаряться.
Дуговой разряд является самостоятельным разрядом в газе и происходит за счет энергии термоэлектронной эмиссии с катода. Является источником сильного светового и ультрафиолетового излучения.
Тлеющий разряд возникает в разряженном газе при сравнительно невысоком напряжении в виде светящегося газового столба. Тлеющий разряд вызывается ударной ионизацией и выбиванием электронов из катода положительными ионами (вторичная ионизация).
Свечение при тлеющем разряде объясняется тем, что при рекомбинации молекул газа высвобождается энергия в виде светового излучения. Свечение будет иметь разные цвета в зависимости от вида газа.
Коронный разряд возникает в сильно неоднородных электрических полях. Например, вблизи острия напряженность электрического поля настолько велика, что ионизация электронным ударом возможна даже при атмосферном давлении. В этой области возникает характерное сферическое свечение в виде короны.
Характеристики
Для сравнения с другими видами осветительного оборудования, необходимо детально изучить рабочие параметры газоразрядных ламп:
- Время готовности – согласно п.34 ГОСТ 24127-80 это временной интервал, протекающий с начала подачи напряжения до момента выхода лампы на рабочие характеристики.
- Потребляемая мощность – отображает величину нагрузки, потребляемую из сети;
- Срок службы – характеризует продолжительность активной работы лампы, может колебаться от 2000 до 20 000 часов;
- Светоотдача – определяет величину светового потока, получаемого с одного ватта потребленной электроэнергии, может колебаться в пределах от 40 до 220 Лм/Вт;
- Температура цветового свечения – определяет спектр цвета, излучаемого газоразрядной лампой, в зависимости от модели находится в пределах от 2200 до 20 000 К;
Рис. 6. Температура цветопередачи
- Индекс цветопередачи – указывает на интенсивность восприятия цветов той поверхности, на которую попадает свет;
Рис. 7. Пример влияния индекса цветопередачи
- Напряжение зажигания – в соответствии с п.35 ГОСТ 24127-80 это такая наименьшая разность потенциалов на электродах, которой будет достаточно для начала образования разряда.
Что представляет собой лампочка накаливания
Обычная лампа накаливания – это работающий от электросети источник света, основная часть которого состоит из тугоплавкого материала, выступающего в качестве тела накала. В большинстве случаев такой материал (проводник) помещается в вакуумную либо заполненную инертными газами колбу. При прохождении тока через проводник он нагревается и начинает испускать яркое свечение.
Интересно! Для того чтобы вольфрамовая нить лампочки засветилась, её необходимо нагреть до температуры около 2000 °C. Пределом температуры накаливания можно считать значение в 3410 °C.
История создания
Фактически ни один учёный никогда не изобретал что-либо полностью самостоятельно: так произошло и с «классической» лампочкой. Ещё в 1840 году британский изобретатель по имени Уоррен Де ла Рю сконструировал первую лампу накаливания, работающую на платиновом проводнике. Двумя годами ранее, в 1838, бельгийский учёный по фамилии Жобар изобрёл первый в мире источник света с угольным сердечником. Ну а ровно за сотню лет до окончания Второй мировой Генрих Гёбель создаёт первые прототипы современных лампочек.
Примечательно, что первая лампа Гёбеля имела бамбуковую обугленную нить, помещённую в вакуум. Учёный продолжал работать над своим детищем ещё около 5 лет, после чего представил его широкой публике.
Внесли свой весомый вклад в изобретение, которым сейчас пользуется весь мир, и русские учёные. Так, в 1874 году на имя Александра Николаевича Лодыгина была зарегистрирована первая лампочка с угольным сердечником, помещённым в безвоздушную среду. Большой проблемой такого источника света было то, что уголь как проводник не мог послужить достаточно долго и вскоре после начала использования перегорал. Со временем светлые умы планеты придумали заменить уголь на вольфрам.
Интересно! Когда мы говорим об электричестве и приборах освещения, нельзя не упомянуть и великого Томаса Эдисона. Именно он впервые создал и запатентовал дешёвую в производстве и долговечную (относительно большинства устройств того времени) лампу накаливания.
С момента своего изобретения знакомый каждому источник света изменился не сильно, но технические перемены в нём всё же происходили: проводник заменили на более совершенный, а пространство внутри колбы стали заполнять специальным газом.
Конструкционные особенности и принцип действия
Стандартная ЛН состоит из:
- колбы, наполненной инертным газом (либо лишённой воздуха вовсе);
- цоколя, служащего одновременно и «крышкой» колбы, и элементом подключения лампы к сети;
- электродов;
- спирали накаливания, расположенной на специальных опорах;
- контакта цоколя.
В качестве материала проводника выбран вольфрам для того, чтобы минимизировать расход тока на нагрев и уменьшить сечение нити до минимально возможного.
Интересно! Параметр удельного сопротивления вольфрама втрое больше, чем у меди.
Спираль питается током от электродов, а в качестве основного материала «рожек», на которых устанавливается спираль, используется молибден: он тугоплавок и фактически не расширяется при нагреве. Использование инертного газа увеличивает потенциальный срок службы спирали: в газовой среде ей «труднее» перегореть. Что касается цоколя, то его размер и резьба на нём могут быть различными.
Характеристики и виды
Помимо привычных нам ЛН бытового предназначения, эксперты выделяют ещё несколько их разновидностей, среди которых:
- Декоративные. Отличаются нестандартными формами колбы, увеличенной спиралью и слабым освещением. Такие устройства чаще всего используются дизайнерами для реализации проектов в стиле «винтаж».
- Иллюминационные. Обладают выкрашенной изнутри колбой, имеют небольшую мощность (до 25 Вт). Быстро меняют оттенок свечения, поэтому требуют частой замены.
- Сигнальные. Ранее широко применялись в различных светосигнальных устройствах, но сегодня в этой сфере их активно вытесняют светодиодные варианты.
- Зеркальные. Частично колба такой ЛН покрыта слоем хорошо отражающего свет алюминия, что позволяет ей сконцентрировать освещение на определённой точке пространства помещения.
- Транспортные. Используются в оснащении оптики автомобилей, тракторов, самолётов, различных морских судов и т. д. Обладают повышенной прочностью и устойчивы к воздействию вибраций.
- Двухнитевые. Специальный подтип, используемый в железнодорожных светофорах, самолётах и автомобилях.
Справка. Существуют и другие типы ЛН, но сегодня большинство из них вытеснено более современными устройствами, речь о которых пойдёт чуть дальше.
Плюсы и минусы
К положительным качествам классической ЛН можно отнести низкую себестоимость, небольшие габариты, невосприимчивость к мелким перепадам напряжения в сети, приятный для человеческих органов зрения спектр освещения, широкий ассортимент выбора по мощности, отсутствие токсичных или других вредных компонентов в составе и шумов в работе. Если же говорить о недостатках, то среди них стоит упомянуть относительно небольшой срок службы, достаточно высокий расход тока и пожароопасность.
Важно! Поверхность вокруг мощных ламп накаливания может нагреваться до +330 градусов Цельсия. Будьте осторожны!
Сфера применения
Классические ЛН используются для бытового освещения помещений и придомовых территорий, коммерческой недвижимости, применяются в автомобильном, железнодорожном и авиатранспорте, устанавливаются в портативные осветительные приборы (карманные фонарики и т. д.), используются в киноискусстве, дизайне, медицине и многих других отраслях жизнедеятельности.
Расшифровка обозначений и виды ламп накаливания
Лампа накаливания — электрический источник света, в котором тело накала (тугоплавкий проводник), помещённое в прозрачный вакуумированный или заполненный инертным газом сосуд, нагревается до высокой температуры за счёт протекания через него электрического тока, в результате чего излучает в широком спектральном диапазоне, в том числе видимый свет. В качестве тела накала в настоящее время используется в основном спираль из сплавов на основе вольфрама.
Расшифровка обозначений ламп накаливания
- В — вакуумная
- Б — биспиральная с аргоновым наполнением
- Г — моноспиральная с аргоновым наполнением
- БО — биспиральная с аргоновым наполнением в опаловой колбе
- БК — с криптоновым наполнением и биспиральным телом накала
- РН — лампы накаливания различного назначения
- МО — для местного освещения
- Д — декоративная
- ЗК — зеркальная с концентрированной КСС
- ЗШ — зеркальная с широкой КСС
- М — в колбе из молочного стекла
- О — в колбе из опалового стекла
- С — в свечевидной колбе;
- Ш — шаровидной колбе
- 220–230 (или иной) — диапазон напряжения сети, В, в котором рекомендуется эксплуатировать лампу
- 100 (или иное) — мощность лампы, Вт
- Е27 — тип цоколя: Е — винтовой цоколь диаметром 27 мм
Расшифровка обозначений некоторых типов источников света
- ДРЛ — дуговая ртутная лампа высокого давления с люминофором
- ДРИ — металлогалогенная лампа
- ДРИЗ — металлогалогенная лампа с внутренним зеркальным отражателем
- ДРИШ — металлогалогенная лампа короткодуговая,шаровая
- ДнаТ — натриевая лампа высокого давления
- ДнаЗ — натриевая лампа высокого давления с зеркальным отражателем
- КГ — галогенная лампа накаливания с кварцевой колбой
Световая отдача
Относительная световая отдача %
Световая отдача (Люмен/Ватт)
Лампа накаливания 40 Вт
Лампа накаливания 60 Вт
Лампа накаливания 100 Вт
Галогенные лампы (с кварцевым стеклом)
Высокотемпературная лампа накаливания
Абсолютно чёрное тело при 4000 K
Абсолютно чёрное тело при 7000 K
Идеально белый источник света
Источник монохроматического зелёного света с длиной волны 555 нм
Ниже представлено приблизительное соотношение мощности и светового потока для обычных прозрачных ламп накаливания в форме «груши», популярных в России, цоколь E27, 220 В.
Мощность (Вт)
Световой поток (лм)
Световая отдача (лм/Вт)
Разновидности ламп накаливания
Лампы накаливания делятся на (расположены по порядку возрастания эффективности):
- Вакуумные (самые простые)
- Аргоновые (азот-аргоновые)
- Криптоновые (примерно +10 % яркости от аргоновых)
- Ксеноновые (в 2 раза ярче аргоновых)
- Галогенные (наполнитель I или Br, в 2,5 раза ярче аргоновых, большой срок службы, не любят недокала, так как не работает галогенный цикл)
- Галогенные с двумя колбами (более эффективный галогенный цикл за счёт лучшего нагрева внутренней колбы)
- Ксенон-галогенные (наполнитель Xe + I или Br, наиболее эффективный наполнитель, до 3х раз ярче аргоновых)
- Ксенон-галогенные с отражателем ИК излучения (так как большая часть излучения лампы приходится на ИК диапазон, то отражение ИК излучения внутрь лампы заметно повышает КПД, производятся для охотничьих фонарей)
- Накаливания с покрытием, преобразующим ИК излучение в видимый диапазон. Ведутся разработки ламп с высокотемпературным люминофором, который при нагреве излучает видимый спектр.
Коэффициент полезного действия
Потребляемый лампой электрический ток только частично преобразуется в видимое человеческим глазом световое излучение. Часть энергии уходит на тепловые потери и рассеивается в окружающую среду колбой и цоколем, а часть – затрачивается на формирование инфракрасного потока, который не фиксируется пользователями. КПД лампы зависит от потребляемой мощности, материала нити накала и температуры нагрева.
Коэффициент полезного действия для бытовых источников света составляет до 2,6%, высокотемпературные промышленные изделия имеют КПД до 5,1%.
Рост КПД ограничивается температурой 3400°С, дальнейший разогрев нити невозможен из-за начала плавления вольфрамового сплава. Проведенные исследования показали, что приближение температуры рабочего тела до максимально возможного значения позволяет увеличить яркость в 2 раза, при этом срок эксплуатации уменьшается на 90-95%. Понижение напряжения положительно сказывается на ресурсе изделия, методика применяется при формировании цепей дежурного освещения (при отсутствии требований по яркости).